Advertisement

Der Orthopäde

, 38:1029 | Cite as

Knochen-Tissue-Engineering in der klinischen Anwendung

Eine Standortbestimmung
  • P. Bernstein
  • M. Bornhäuser
  • K.-P. Günther
  • M. Stiehler
Leitthema

Zusammenfassung

Die Behandlung großer Knochendefekte stellt nach wie vor in vielen Bereichen der Orthopädie und Unfallchirurgie eine Herausforderung dar. Bei der Verwendung von Knochentransplantaten und -ersatzstoffen sind für den klinischen Erfolg neben einer ausreichenden Primärstabilität die biologische Stimulation des Lagers und ein entsprechendes Remodelling wichtige Voraussetzungen. Während die osteokonduktive Wirkung von derzeit verfügbaren Knochenersatzstoffen den konventionellen Knochentransplantaten durchaus ähnlich sein kann, weisen sie als reiner Platzhalter keinerlei osteoinduktive oder gar osteogenetische Potenz auf. Dies ist nur unter Zusatz entsprechender Proteine (Wachstumsfaktoren) oder zellulärer Komponenten erreichbar. Eine Möglichkeit dazu ist die Verwendung von Stammzellen zur Vitalisierung von Trägerstoffen (Tissue Engineering). Im Rahmen dieser Arbeit sollen die derzeitigen Grundlagen der Technik in der Behandlung knöcherner Defekte zusammengefasst und anhand eines Fallberichts die klinische Applikation stammzellbeladener Trägerstoffe bei der Behandlung ausgedehnter periprothetischer azetabulärer Knochendefekte illustriert werden.

Schlüsselwörter

„Tissue Engineering“ Knochendefekt Knochentransplantat Stammzellen 

Bone tissue engineering in clinical application

Assessment of the current situation

Abstract

Treatment of severe bone defects remains a challenge in orthopaedic surgery and traumatology. Surgical techniques should provide primary stability to reach osseous integration and secondary remodeling of bone grafts and substitute materials. None of the currently available substitute materials provides osteoconduction and osteogenesis comparable to those of human allografts and autografts. To enhance osteoinductive and osteogenetic properties of these implants mesenchymal stem cells are used successfully in bone tissue engineering approaches. The aim of this report is to summarize the currently available data on bone tissue engineering and preliminary experience with a tissue engineered graft in acetabular revision surgery after loosening of a hip replacement.

Keywords

Tissue engineering Bone defect Bone transplant Stem cells 

Notes

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Die durchgeführten Arbeiten zur regenerativen Therapie an unserer Klinik werden aus Mitteln der Endostiftung Hamburg, des DFG-Center for Regenerative Therapies Dresden (CRTD) und des BMBF gefördert. Es besteht keine industrielle Förderung. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Literatur

  1. 1.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822CrossRefPubMedGoogle Scholar
  2. 2.
    Arinzeh TL, Peter SJ, Archambault MP et al (2003) Allogenic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85:1927–1935PubMedGoogle Scholar
  3. 3.
    Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology and potential applications. Stem Cells 19:180–192CrossRefPubMedGoogle Scholar
  4. 4.
    Blake GM, Park-Holohan SJ, Cook GJ et al (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49CrossRefPubMedGoogle Scholar
  5. 5.
    Bruder SP, Kurth A, Shea M et al (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162CrossRefPubMedGoogle Scholar
  6. 6.
    De Long WG Jr, Einhorn TA, Koval K et al (2007) Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 89:649–658CrossRefGoogle Scholar
  7. 7.
    Djouad F, Bony C, Apparailly F et al (2006) Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 82:1060–1066CrossRefPubMedGoogle Scholar
  8. 8.
    Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A:454–464Google Scholar
  9. 9.
    Gan Y, Dai K, Zhang P et al (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–3982CrossRefPubMedGoogle Scholar
  10. 10.
    Gangji V, Hauzeur JP, Matos C et al (2004) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 86:1153–1160PubMedGoogle Scholar
  11. 11.
    Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211:27–35CrossRefPubMedGoogle Scholar
  12. 12.
    Habraken WJ, Wolke JG, Jansen JA (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248CrossRefPubMedGoogle Scholar
  13. 13.
    Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23CrossRefPubMedGoogle Scholar
  14. 14.
    Hernigou P, Poignard F, Beaujean F et al (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437CrossRefPubMedGoogle Scholar
  15. 15.
    Hutmacher DW, Schantz JT, Lam CX et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260CrossRefPubMedGoogle Scholar
  16. 16.
    Kalia P, Blunn GW, Miller J et al (2006) Do autologous mesenchymal stem cells augment bone growth and contact to massive bone tumor implants? Tissue Eng 12:1617–1626CrossRefPubMedGoogle Scholar
  17. 17.
    Kasten P, Beyen I, Egermann M et al (2008) Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur J Cell Mat 16:47–55Google Scholar
  18. 18.
    Kitoh H, Kitakoji T, Tsuchiya H et al (2007) Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones. Bone 40:522–528CrossRefPubMedGoogle Scholar
  19. 19.
    Korda M, Blunn G, Goodship A et al (2008) Use of mesenchymal stem cells to enhance bone formation around revision hip replacements. J Orthop Res 12:12Google Scholar
  20. 20.
    Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586CrossRefGoogle Scholar
  21. 21.
    Navarro M, Michiardi A, Castano O et al (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158CrossRefPubMedGoogle Scholar
  22. 22.
    Nguyen H, Morgan DA, Forwood MR (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8:93–105CrossRefPubMedGoogle Scholar
  23. 23.
    Nishikawa M, Myoui A, Ohgushi H et al (2004) Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis. Cell Transplant 13:367–376CrossRefPubMedGoogle Scholar
  24. 24.
    Pruss A, Baumann B, Seibold M et al (2001) Validation of the sterilization procedure of allogeneic avital bone transplants using peracetic acid-ethanol. Biologicals 29:59–66CrossRefPubMedGoogle Scholar
  25. 25.
    Rezwan K, Chen QZ, Blaker JJ et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefPubMedGoogle Scholar
  26. 26.
    Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38(Suppl 1):75–80CrossRefGoogle Scholar
  27. 27.
    Slooff TJ, Buma P, Schreurs BW et al (1996) Acetabular and femoral reconstruction with impacted graft and cement. Clin Orthop Relat Res 324:108–115CrossRefPubMedGoogle Scholar
  28. 28.
    Sörensen J, Ullmark G, Långström B et al (2003) Rapid bone and blood flow formation in impacted morselized allografts. Acta Orthop 74:633–643CrossRefGoogle Scholar
  29. 29.
    Stiehler M, Bunger C, Baatrup A et al (2009) Effect of dynamic 3-D culture on proliferation, distribution and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 89:96–107PubMedGoogle Scholar
  30. 30.
    Temmerman OP, Raijmakers PG, Heyligers IC et al (2008) Bone metabolism after total hip revision surgery with impacted grafting: Evaluation using H(2) (15)O and (18)F-fluoride PET; A Pilot Study. Mol Imaging Biol 10:288–293CrossRefPubMedGoogle Scholar
  31. 31.
    Tsiridis E, Ali Z, Bhalla A et al (2007) In vitro and in vivo optimization of impaction allografting by demineralization and addition of rh-OP-1. J Orthop Res 25:1425–1437CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu W, Xu W, Jiang R et al (2005) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80:267–274CrossRefPubMedGoogle Scholar
  33. 33.
    Ziegler J, Anger D, Krummenauer F et al (2008) Biological activity of recombinant human growth factors released from biocompatible bone implants. J Biomed Mater Res A 86:89–97PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • P. Bernstein
    • 1
  • M. Bornhäuser
    • 2
  • K.-P. Günther
    • 1
  • M. Stiehler
    • 1
  1. 1.Orthopädische KlinikUniversitätsklinikum Carl Gustav CarusDresdenDeutschland
  2. 2.Medizinische Klinik IUniversitätsklinikum Carl Gustav CarusDresdenDeutschland

Personalised recommendations