Skip to main content

Advertisement

Log in

Bewertung von neuartigen Biomaterialien zum Zweck der Knochenrekonstruktion und -regeneration

In-vitro-Versuche mit Mono- und Kokulturen von Osteoblasten und Endothelzellen

In vitro trials with single and co-cultures of osteoblasts and endothelial cells

Evaluation of new biomaterials for bone reconstruction and regeneration

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Viele verschiedene Knochenersatzstoffe werden für klinische Anwendungen entwickelt. Laut geläufigem Dogma gelten diese Stoffe für die Rekonstruktion und Regeneration von Knochengewebe als geeignet, wenn Osteoblasten und Endothelzellen als Monokulturen oder Kokulturen auf ihnen wachsen und normale Zellfunktionen aufweisen. Jedoch werden auch Tierexperimente vorausgesetzt, um die klinische Eignung der Materialien zu bestätigen. Gute standardisierte In-vitro-Tests dienen also dazu, nur ausgewählte und vielversprechende Stoffe für Tierversuche zuzulassen. Vor allem Kokulturmodelle mit Beteiligung aller relevanter Zelltypen haben ein vielversprechendes Zukunftspotential.

Abstract

Many different types of bone substitute biomaterials are being developed for different applications in the body. The current dogma is that if osteoblasts and endothelial cells grow and exhibit normal cell functions on these materials in vitro as single cultures or in co-cultures, then the biomaterials are suitable for implantation for bone reconstruction and regeneration. Generally, only in vivo animal studies will prove whether this is the case. However, in vitro studies offer a good pre-screening and selection basis to evaluate the biocompatibility of novel biomaterials prior to animal studies. Multicell type co-culture systems hold a great promise for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aubin JE (1998) Bone stem cells. J Cell Biochem 30–31(Suppl):73–82

    Google Scholar 

  2. Beresford JN, Gallagher JA, Poser JW, Russell RGG (1984) Production of osteocalcin by human bone cells in vitro. Effects of 1,25-(OH)2D3.24,25-(OH)2D3, parathyreoid hormone, and glucocorticoids. Metab Bone Dis Relat Res 5:229–234

    Article  CAS  PubMed  Google Scholar 

  3. Bilbe G, Roberts E et al (1996) PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone 19(5):437–445

    Article  CAS  PubMed  Google Scholar 

  4. Billau A, Edy VG, Heremans H et al (1977) Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother 12:11–15

    Google Scholar 

  5. Bondar B, Fuchs S, Motta A et al (2007) Functionality of endothelial cells on silk fibroin nets: Comparative study of micro- and nanometric fibre size. Biomaterials 29:561–572

    Article  PubMed  CAS  Google Scholar 

  6. Bostrom RD, Mikos AG (1997) Tissue engineering of bone. In: Atala A, Mooney DJ, Vacanti JP et al (eds) Synthetic biodegradable polymer scaffolds, Birkhäuser, Boston, pp 215–234

  7. Bottaro DP, A. Liebmann-Vinson et al (2002) Molecular signaling in bioengineered tissue microenvironments. Ann NY Acad Sci 961:143–153

    Article  CAS  PubMed  Google Scholar 

  8. Boyce T, Edwards J, Scarborough N (1999) Allograft bone: the influence of processing on safety and performance. Orthop Clin North Am 30:571–581

    Article  CAS  PubMed  Google Scholar 

  9. Brochhausen C, Lehmann M, Halstenberg S et al (2009) Signalling molecules and growth factors for tissue engineering of cartilage – What can we learn from the growth plate? J Tiss Eng Reg Med (Epub ahead of print) DOI: 10.1002/term.192

    Google Scholar 

  10. Burge RT, King AB, Balda E, Worley D (2003) Methodology for estimating current and future burden of osteoporosis in state populations: Application in Florida in 2000 through 2025. Value Health 6(5):574–583

    Article  PubMed  Google Scholar 

  11. Chavassieux PM, Chenu C, Valentin-Opran A et al (1990) Influence of experimental conditions on osteoblast activity in human primary bone cell cultures. J Bone Miner Res 5:337–343

    Article  CAS  PubMed  Google Scholar 

  12. Chen G, Ushida T, Tateishi T (2001) Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. J Biomed Mater Res 57:8–14

    Article  CAS  PubMed  Google Scholar 

  13. Cheung C (2005) The future of bone healing. Clin Podiatr Med Surg 22:631–641

    Article  PubMed  Google Scholar 

  14. Chou YF, Chiou WA, Xu Y et al (2004) The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials 25:5323–5331

    Article  CAS  PubMed  Google Scholar 

  15. Dupoirieux L, Costes V, Jammet P, Souyris F (1994) Experimental study on demineralized bone matrix (DBM) and coral as bone graft substitutes in maxillofacial surgery. Int J Oral Maxillofac Surg 23:395–398

    Article  CAS  PubMed  Google Scholar 

  16. Evans CE, Galasko CSB, Ward C (1990) Effect of donor age on the growth in vitro of cells obtained from human trabecular bone. J Orthop Res 8:234–347

    Article  CAS  PubMed  Google Scholar 

  17. Fournier B, Brice PA (1991) Characterization of a new human osteosarcoma cell line OHS-4. J Cell Biol 114:577–583

    Article  CAS  PubMed  Google Scholar 

  18. Friedlaender GE (1983) Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop 1:58–68

    Google Scholar 

  19. Fuchs S, Jiang X, Schmidt H et al (2009) Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30:1329–1338

    Article  CAS  PubMed  Google Scholar 

  20. Gehron Robey P, Termine JD (1985) Human bone cells in vitro. Calcif Tissue Int 37:435–460

    Google Scholar 

  21. Hofmann A, Ritz U, Verrier S et al (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29:4217–4226

    Article  CAS  PubMed  Google Scholar 

  22. Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop 1:290–305

    Google Scholar 

  23. Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:131–138

    Article  CAS  Google Scholar 

  24. Levenberg S, Langer R (2004) Advances in tissue engineering, current topics in developmental biology. Elsevier, München, DOI 61:0070-2153/04

  25. Lian JB, Stein GS (1995) Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J 15:118–140

    CAS  PubMed  Google Scholar 

  26. Liu F, Malaval L, Aubin JE (1997) The mature osteoblast phenotype is characterized by extensive plasticity. Exp Cell Res 232:97–105

    Article  CAS  PubMed  Google Scholar 

  27. Looker AC, Orwoll ES, Johnston CC Jr et al (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12:1761–1768

    Article  CAS  PubMed  Google Scholar 

  28. Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–469

    Article  CAS  PubMed  Google Scholar 

  29. McAllister RM, Gardner MB, Green A et al (1971) Cultivation in vitro of cells from a human osteosarcoma. Cancer 27:397–402

    Article  CAS  PubMed  Google Scholar 

  30. Morelli C, Barbanti-Brodano G, Ciannilli A et al (2007) Cell morphology, markers, spreading and proliferation on orthopaedic biomaterials. An innovative cellular model for the „ in vitro“ study. J Biomater Res A 83:178–183

    Article  CAS  Google Scholar 

  31. Mulliken JB, Glowacki J (1980) Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg 65:553–560

    Article  CAS  PubMed  Google Scholar 

  32. Nomura S, Takanano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19:91–96

    Article  CAS  PubMed  Google Scholar 

  33. Owen M (1970) Origin of bone cells. Int Rev Cytol 28:213–238

    Article  CAS  PubMed  Google Scholar 

  34. Patka P, Haarman HJ, Bakker FC (1998) Bone transplantation and bone replacement materials. Ned Tijdschr Geneeskd 142:893–896

    CAS  PubMed  Google Scholar 

  35. Pontén J, Saksela E (1967) Two established in vitro cell lines from human mesenchymal tumours. Int J Cancer 2:434–447

    Article  PubMed  Google Scholar 

  36. Riggs BL, Melton LJ 3rd (1995) The worldwide problem of osteoporosis: Insights afforded by epidemiologiy. Bone 17(5 Suppl):505–511

    Article  Google Scholar 

  37. Robey PG, Fedarko NS, Hefferan TE et al (1993) Structure and molecular regulation of bone matrix proteins. J Bone Miner Res 2:483–487

    Article  Google Scholar 

  38. Rochet N, Dubousset J, Mazeau C et al (1999) Establishment, characterisation and partial cytokine expression profile of a new human osteosarcoma cell line (CAL 72). Int J Cancer 82:282–285

    Article  CAS  PubMed  Google Scholar 

  39. Santos MI, Fuchs S, Gomes Meet et al (2007) Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials 28:240–248

    Article  CAS  PubMed  Google Scholar 

  40. Santos MI, Tuzlakoglu K, Fuchs S et al (2008) Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29:4306–4313

    Article  CAS  PubMed  Google Scholar 

  41. Schlegel KA, Donath K (2004) De novo bone formation using bovine collagen and platelet-rich plasma. Biomaterials 25:5387–5393

    Article  CAS  PubMed  Google Scholar 

  42. Siggelkow H, Niedhart C, Kurre W et al (1998) In vitro differentiation potential of a new human osteosarcoma cell line (HOS 58). Differentiation 63:81–91

    Article  CAS  PubMed  Google Scholar 

  43. Stein GS, Lian JB, Owen TA (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 4:3111–3123

    CAS  PubMed  Google Scholar 

  44. Stein G.S, Lian JB (1993) Molecular mechanisms mediating developmental and hormone regulated expression of genes in osteoblasts: an integrated relationship of cell growth and differentiation. In: Noda M (ed) Cellular and molecular biology of bone. Academic Press. San Diego P 47–95

  45. Unger RE, Peters K, Huang Q et al (2005a) Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Biomaterials 17:3461–3469

    Article  CAS  Google Scholar 

  46. Unger RE, Krump-Konvalinkova V, Peters K, Kirkpatrick CJ (2002) In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc Res 3:384–397

    Article  CAS  Google Scholar 

  47. Unger RE, Peters K, Wolf M et al (2004) Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 21:5137–5146

    Article  CAS  Google Scholar 

  48. Unger RE, Motta A, Kunkel M et al (2006) Interactions of human osteoblast and endothelial cell cocultures on different biomaterial surfaces: fibroin nets, porous tri-calcium phosphate and calcium phosphate/SiO2 Xerogels. Presented at the 20th European Conference on Biomaterials, Nantes, France

  49. Unger RE, Sartoris A, Peters K et al (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on the three-dimensional porous biomaterials. Biomaterials 28:3965–3976

    Article  CAS  PubMed  Google Scholar 

  50. Unger RE, Huang Q, Peters K et al (2005b) Growth of human cells on polyethersulfone (PES) hollow fiber membranes. Biomaterials 14:1877–1884

    Article  CAS  Google Scholar 

  51. Van Heest A, Swiontowski M (1999) Bone-graft substitutes. Lancet 353(Suppl 1):28–29

    Article  Google Scholar 

  52. Winn SR, Uludag H, Hollinger JO (1999) Carrier systems for bone morphogenetic proteins. Clin Orthop Relat Res 1:96–106

    Google Scholar 

  53. Yamamoto M, Kato K, Ikada Y (1997) Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates. J Biomed Mater Res 37:29–36

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde durch Mittel des Bundesministerium für Bildung und Forschung (Ref. Nr. 0313405C) sowie durch das NoE EXPERTISSUES (Contract No. 500283-2) von der Europäischen Union unterstützt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.E. Unger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unger, R., Halstenberg, S., Günther, H. et al. Bewertung von neuartigen Biomaterialien zum Zweck der Knochenrekonstruktion und -regeneration. Orthopäde 38, 1020–1028 (2009). https://doi.org/10.1007/s00132-009-1491-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1491-x

Schlüsselwörter

Keywords

Navigation