Advertisement

Der Orthopäde

, Volume 34, Issue 6, pp 533–542 | Cite as

Überlastungsschäden der Achillessehne: Die Bedeutung von Blutgefäßversorgung und Angiogenese

  • W. PetersenEmail author
  • T. Pufe
  • S. Pfrommer
  • B. Tillmann
Tendinopathien

Zusammenfassung

Degenerative Veränderungen der Achillessehne entstehen bevorzugt in Regionen, in denen das Sehnengewebe hypo- oder avaskulär ist (Insertion, Sehnentaille). Die vaskulären Proliferationen in degenerativ geschädigtem Sehnengewebe ist das Ergebnis der HIF-1-vermittelten Expression des Angiogenesefaktors VEGF. Die VEGF-Expression lässt sich durch mechanischen Stress, Hypoxie und inflammatorische Zytokine stimulieren. Alle 3 Faktoren sind äthiologisch für die Entstehung degenerativer Sehnenerkrankungen bedeutsam.

Die Neoangiogenese spielt im Rahmen der Pathogenese degenerativer Sehnenerkrankungen eine wichtige Rolle. Einerseits wachsen mit den Blutgefäßen Nervenendigungen in das Sehnengewebe ein, die wesentlich für das Hauptsymptom Schmerz verantwortlich sind. Andererseits wird die mechanische Festigkeit des Sehnengewebes durch das Einwachsen der Blutgefäße reduziert. Auf diese Weise wird die Entstehung spontaner Sehnenrupturen begünstigt. Bei dem Prozess der „angiogenetischen Gewebsdestruktion“ spielt neben der direkten Schädigung durch das „Einwachsen“ auch die VEGF-induzierte Expression von Matrixmetalloproteinasen (MMP) eine Rolle.

Untersuchungen unter Verwendung von Dopplerultraschall (US) haben zeigen können, dass sich die Gefäßneubildungen unter einem exzentrischen Training zurückbilden können. Parallel kommt es zu einer deutlichen Besserung der Schmerzsymptomatik. Bei Patienten, bei denen eine Rückbildung der Gefäßneubildungen ausblieb, blieben die Schmerzen bestehen. Ein weiterer erfolgversprechender Ansatz ist die ultraschallgestützte Sklerosierung der Blutgefäße.

Schlüsselworte

Spontanruptur Vascular Endothelial Growth Factor (VEGF) Gefäßneubildung Tendinose 

Overload damage to the Achilles tendon: the importance of vascular care and angiogenesis

Abstract

In the Achilles tendon, degenerative changes mostly occur in regions that are hypo- or avascular. Angiogenesis is mediated by angiogenic factors and recent studies have shown that vascular endothelial growth factor (VEGF) is highly expressed in degenerative Achilles tendons, whereas VEGF expression is nearly completely downregulated in healthy tendons. VEGF expression in tendon fibroblasts is regulated by the transcription factor hypoxia inducible factor 1 (HIF-1). Several factors are able to upregulate VEGF expression in tenocytes: hypoxia, inflammatory cytokines and mechanical load. Angiogenesis plays an important role in the tendinotic process.

The neovessels are accompanied by small glutamate positive neural structures. This finding suggests that angiogenesis plays an important role in the pain experienced during the degenerative tendon disease. On the other hand, there is some evidence that HIF-1/VEGF induced angiogenesis has an effect on the material properties of the tendinotic tendon tissue. Since VEGF has the potential to stimulate the expression of matrix metalloproteinases and inhibits the expression of tissue inhibitors of matrix metalloproteinases (TIMP) in various cell types this cytokine might play a significant role in the pathogenetic processes during degenerative tendon disease.

These experimental findings are in accordance with clinical results which show that eccentric training leads to a regression of neovessels and decrease of pain. Another strategy is the local administration of a sclerosing agent (Polidocanol) to destroy neovessles. Preliminary results show that both strategies are effective in reducing vascular density and pain.

Keywords

Spontaneous rupture Vascular endothelial growth factor (VEGF) Neovessels Tendinosis 

Notes

Danksagung

Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft unterstützt (DFG Pu 214/3–1 und Pe 873/2–1). Wir danken Frau Inka Kronenbitter, Herrn Frank Lichte, Frau Marion Lorenzen, Frau Miriam Lemmer, Frau Sonja Seiter, Frau Karin Stengel und Frau Regine Worm für die technische Hilfe.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Ahmed IM, Lagopoulos M, McConnel P, Soames RW, Sefton GK (1998) Blood supply of the Achilles tendon. J Orthop Res 16: 591–596CrossRefPubMedGoogle Scholar
  2. 2.
    Alfredson H, Öhberg L, Jonsson P (1998) Heavy load eccentric calf muscle exercise for the treatment of chronic Achilles tendinosis. Am J Sports Med 26: 360–366PubMedGoogle Scholar
  3. 3.
    Alfredson H, Thorsen K, Lorentzon R (1999) In situ microdialysis in tendon tissue: High levels of glutamate, but not prostaglandin E2 in chronic Achilles tendon pain. Knee Surg, Sports Traumatol Arthrosc 7: 378–381Google Scholar
  4. 4.
    Alfredson H, Forsgren S, Fahlltröm M, Johannson M, Thorsen K, Lorentzon R (2001) Glutamate NMDAR1 receptors localised to nerves in human Achilles tendons. Implications for treatment. Knee Surg, Sports Traumatol, Arthrosc 9: 334–338Google Scholar
  5. 5.
    Alfredson H, Bjuer D, Thorsen K, Lorentzon R (2002) High intratendinous lactate levels in painful chronic Achilles tendinosis. An investigation using microdialysis technique. J Orthop Res 20: 934–938CrossRefPubMedGoogle Scholar
  6. 6.
    Alfredson H, Öhlberg l, Forsgren S (2003) Is vasculo neural ingrowth the cause of pain in chronic Achilles tendinosis — An investigation using Doppler ultrasound, immunohistochemistry, and local injections. Knee Surg, Sports Traumatol Arthrosc 11: 334–338Google Scholar
  7. 7.
    Alfredson H, Öhlberg I (2005) Sclerosing injections to areas of neo-vascularisation reduce pain in chronic Achilles tendinopathy. Knee Surg, Sports Traumatol Arthrosc (Epup ahead of print)Google Scholar
  8. 8.
    Altmann K (1964) Zur kausalen Histiogenese des Knorpels. W. Roux’s Theorie und experimentelle Wirklichkeit. Ergeb Anat Entwicklungsgesch 37: 1–167PubMedGoogle Scholar
  9. 9.
    Backman C, Friden J, Widmark A (1991) Blood flow in chronic Achilles tendinosis. Radioactive microshere study in rabbits. A Orthop Scand 62: 386–390Google Scholar
  10. 10.
    Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments — an adaptation to compressive load. J Anat 193: 481–494CrossRefPubMedGoogle Scholar
  11. 11.
    Carr AJ, Norris SH (1989) The blood supply of the calcaneal tendon. J Bone Joint Surg Br 71: 100–101PubMedGoogle Scholar
  12. 12.
    Cummings JE, Anson JB, Carr WB, Wrigth RR, Houser DW (1946) The structure of the calcaneal tendon (of Achilles) in relation to orthopaedic surgery with additional observation of the plantaris muscle. Surg Gynecol Obstetr 83: 107–116Google Scholar
  13. 13.
    Curwin S, Stanish WD (1984) Tendinitis: its etiology and treatment. Collamore Press, LexingtonGoogle Scholar
  14. 14.
    Ferrara N (2004) Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 25: 581–611CrossRefPubMedGoogle Scholar
  15. 15.
    Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 28: 442–447Google Scholar
  16. 16.
    Frey C, Shereff M, Greenidgen N (1990) Vascularity of the posterior tibial tendon. J Bone Joint Surg 72: 884–888PubMedGoogle Scholar
  17. 17.
    Fukai N, Eklund L, Marneros AG et al. (2002) Lack of collagen XVII/endostatin results in eye abnormalities. EMBO J 21: 1535–1544CrossRefPubMedGoogle Scholar
  18. 18.
    Graf J, Schneider U, Niethard FU (1990) Die Mikrozirkulation der Achillessehne und die Bedeutung des Paratenons. Handchir Mikrochir Plast Chir 22: 163–166PubMedGoogle Scholar
  19. 19.
    Grishnan A (2003) Angiogenesis alters the mechanical properties of the extra cellular matrix. ORS TransactionsGoogle Scholar
  20. 20.
    Jozsa LG, Kannus P (1999) Human tendons – anatomy, physiology and pathology. Champain, Il USA: Human KineticyGoogle Scholar
  21. 21.
    Kannus P, Josza L (1991) Histopathological changes preceeding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg 73: 1507–1025PubMedGoogle Scholar
  22. 22.
    Karumanchi SA, Jha V, Ramchandran R et al. (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 7: 811–822CrossRefPubMedGoogle Scholar
  23. 23.
    Kim YM, Jang JW, Lee OH et al. (2000) Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 60: 5410–5413PubMedGoogle Scholar
  24. 24.
    Kim YM, Hwang S, Kim YM et al. (2002) Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 277: 27872–27879CrossRefPubMedGoogle Scholar
  25. 25.
    Lagergren C, Lindholm A (1958) Vascular distribution in the Achilles tendon: an angiographic study. Acta Chir Scand 116: 491–495Google Scholar
  26. 26.
    Leadbetter WB (1992) Cell-matrix response in tendon injury. Clin Sports Med 11: 533–542Google Scholar
  27. 27.
    Li J, Hampton T, Morgan JP, Simons M (1997) Strech-induced VEGF expression in the heart. J Clin Invest 100: 18–24Google Scholar
  28. 28.
    Neufeld G, Cohen T, Genginovitch S, Poltrak Z (1999) Vascular endothelial growth factor and its receptors. FASEB J 13: 9–22PubMedGoogle Scholar
  29. 29.
    Öhberg L, Lorentzon R, Alfredsn H (2001) Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation. Knee Surg, Sports Traumatol, Arthroscopy 9: 235–238Google Scholar
  30. 30.
    Öhberg L, Alfredson H (2002) Ultrasound guided sclerosing of neovessels in painful chronic Achilles tendinosis: pilot study of a new treatment. Br J Sports Med 36: 173–177Google Scholar
  31. 31.
    Öhberg L, Alfredson H (2004) Effects on neovascularisation behind the good results with eccentric training in chronic mid-portion Achilles tendinosis? Knee Surg, Sports Traumatol, Arthroscopy 12: 465–470Google Scholar
  32. 32.
    Pauwels F (1960) A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z Anat Entwicklungsgesch 121: 478–515CrossRefPubMedGoogle Scholar
  33. 33.
    Petersen, W, Tillmann B (1995) Age-related blood and lymph supply of the knee menisci. A cadaver study. Acta Orthop Scand 66: 308–312PubMedGoogle Scholar
  34. 34.
    Petersen W, Tillmann B (1998) Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl) 197: 317–324Google Scholar
  35. 35.
    Petersen W, Stein V, Tillmann B (1999) Blood supply of the quadriceps tendon. Unfallchirurg 56: 345–348Google Scholar
  36. 36.
    Petersen W, Stein V, Tillmann B (1999) Blood supply of the tibialis anterior tendon. Arch Orthop Trauma Surg 119: 371–375PubMedGoogle Scholar
  37. 37.
    Petersen W, Bobka T, Stein V, Tillmann B (2000) Blood supply of the peroneal tendons — Injection and immunohistochemical studies of cadaver tendons. Acta Orthop Scand 71: 168–174CrossRefPubMedGoogle Scholar
  38. 38.
    Petersen W, Hohmann G, Stein V, Tillmann B (2001) Blood supply of the posterior tibial tendon — a quantitative study in human cadavers. J Bone Joint Surg Br 84: 141–144CrossRefGoogle Scholar
  39. 39.
    Petersen W, Hohmann G (2001) Collagenous fibril texture of the gliding zone of the human tibialis posterior tendon. Foot Ankle Int 22: 126–132PubMedGoogle Scholar
  40. 40.
    Petersen W, Tsokos M, Pufe T (2002) Expression of VEGF121 and VEGF165 in hypertrophic chondrocytes of the human growth plate and epiphyseal cartilage. J Anat 201: 153–157CrossRefPubMedGoogle Scholar
  41. 41.
    Petersen W, Pufe T, Kurz B, Mentlein R, Tillmann B (2002) Angiogenesis in fetal tendon development: Spatial and temporal expression of the angiogenetic peptide vascular endothelial growth factor (VEGF). Anat Embryol 205: 263–270CrossRefPubMedGoogle Scholar
  42. 42.
    Petersen W, Hohmann G, Pufe T et al. (2004) Structure of the human tibialis posterior tendon. Arch Orthop Trauma Surg 2004: 124: 237–242Google Scholar
  43. 43.
    Petersen W, Unterhauser F, Pufe T, Zantop T, Sudkamp NP, Weiler A (2003) The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Arch Orthop Trauma Surg 123: 168–174PubMedGoogle Scholar
  44. 44.
    Petersen W, Varoga D, Zantop T, Hassenpflug J, Mentlein R, Pufe T (2004) Cyclic strain influences the expression of the vascular endothelial growth factor (VEGF) and the hypoxia inducible factor 1 alpha (HIF-1alpha) in tendon fibroblasts. J Orthop Res 22: 847–853CrossRefPubMedGoogle Scholar
  45. 45.
    Ploetz E (1938) Funktioneller Bau und funktionelle Anpassung der Gleitsehnen. Z Orthop 67: 212–234Google Scholar
  46. 46.
    Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The angiogenic peptide vascular endothelial cell growth factor (VEGF) is expressed in fetal and ruptured tendons. Virchows Archive 439: 579–585CrossRefGoogle Scholar
  47. 47.
    Pufe T, Wildemann B, Petersen W, Mentlein R, Raschke M, Schmidmaier G (2002) Quantitative measurement of the splice variants 120 and 164 of the angiogenic peptide vascular endothelial growth factor (VEGF) in the time flow of fracture healing: a study in rat. Cell Tissue Res 309: 387–92CrossRefPubMedGoogle Scholar
  48. 48.
    Pufe T, Paulsen F, Petersen W, Mentlein R, Tsokos M (2003) The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed in chronic sacral pressure ulcers. J Pathol 200: 130–136CrossRefPubMedGoogle Scholar
  49. 49.
    Pufe T, Petersen W, Kurz B, Tsokos M, Tillmann B, Mentlein R (2003) Mechanical factors influence the expression of endostatin — an inhibitor of angiogenesis — in tendons. J Orthop Res 21: 610–616CrossRefPubMedGoogle Scholar
  50. 50.
    Pufe T, Lemke A, Kurz B, Petersen W, Tillmann B, Mentlein R (2004) Mechanical overload induces VEGF in cartilage explants via hypoxia-inducible factor (HIF) Am J Pathol 164: 185–192Google Scholar
  51. 51.
    Pufe T, Harde V, Petersen W, Goldring MB, Tillmann B, Mentlein R (2004) VEGF induces matrix metalloprotease expression in chondrocytes. J Pathol 202: 367–374CrossRefPubMedGoogle Scholar
  52. 52.
    Pufe T, Petersen W, Goldring MB et al. (2004) Endostatin/collagen XVIII — an inhibitor of angiogenesis — is expressed in cartilage and fibrocartilage. Matrix Biol 23: 267–276CrossRefPubMedGoogle Scholar
  53. 53.
    Rudert M, Tillmann B (1993) Lymph and blood supply of the human intervertebral disc – cadaver study of correlations to discitis. Acta Orthop Scand 64: 37–40PubMedGoogle Scholar
  54. 54.
    Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, Timpl R (1998) Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J 17: 4249–4256CrossRefPubMedGoogle Scholar
  55. 55.
    Schmidt-Rohlfing B, Graf J, Schneider U, Niethard FU (1992) The blood supply of the Achilles tendon. Intern Orthop (SICOT) 16: 29–31Google Scholar
  56. 56.
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587): 983–985PubMedGoogle Scholar
  57. 57.
    Stein V, Laprell H, Tinnemeyer S, Petersen W (2000) Quantitative assesment of the intravascular volumen of the human Achilles tendon. Acta Orthop Scand 181: 313–314Google Scholar
  58. 58.
    Tillmann B, Schünke M (1991) Struktur und Funktion extrazellulärer Matrix. Anat Anz 168: 23–36Google Scholar
  59. 59.
    Tillmann B, Schünke M, Rödecker K (1991) Struktur der Supraspinatussehne. Anat Anz 172: 82–83Google Scholar
  60. 60.
    Tillmann B (1992) Rotatorenmanschettenrupturen — Desinsertionen der Supraspinatussehne — Naht der Supraspinatussehne — Spaltung des ligamentum coracoacromiale. Operat Orthop Traumatol 4: 181–184Google Scholar
  61. 61.
    Tillmann B, Kolts I (1993) Ruptur der Ursprungssehne des Caput longum musculi bicipitis brachii — Struktur und Blutversorgung der Bizepssehne. Operat Orthop Traumatol 5: 107–111Google Scholar
  62. 62.
    Tillmann B, Koch S (1995) Funktionelle Anpassungsvorgänge in Gleitsehnen. Sportverl Sportschad 9: 44–50Google Scholar
  63. 63.
    Tillmann B (2003). Untere Extremität. In: Tillmann B, Töndury G (Hrsg) Rauber/Kopsch: Anatomie des Menschen, Bd I. Thieme, Stuttgart, S 150–153Google Scholar
  64. 64.
    Wilson AM, Goodship AE (1994) Exerise induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech 27: 899–905CrossRefPubMedGoogle Scholar
  65. 65.
    Yamaguchi N, Anaud-Apte B, Lee M et al. (1999) Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18: 4414–4423CrossRefPubMedGoogle Scholar
  66. 66.
    Wladimirov B, Andreeff I (1971) Über die Mikrovaskularisation der Achillessehne. Anat Anz 133: 12–19Google Scholar
  67. 67.
    Zantop T, Petersen W, Tillmann B (2000) Structure of the human Achilles tendon. J Anat 356Google Scholar
  68. 68.
    Zantop T, Petersen W, Tillmann B (2000) Structure and morphology of the human Achilles tendon. EORS Transactions 10: 96Google Scholar
  69. 69.
    Zantop T, Tillmann B, Petersen W (2003) Quantitative assessment of blood vessels of the human Achilles tendon: an immunohistochemical cadaver study. Arch Orthop Trauma Surg 123: 501–504CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • W. Petersen
    • 1
    • 3
    Email author
  • T. Pufe
    • 2
  • S. Pfrommer
    • 1
  • B. Tillmann
    • 2
  1. 1.Klinik für Unfall-, Hand- und Wiederherstellungschirurgie Universitätsklinikum Münster
  2. 2.Anatomisches Institut der Christian-Albrechts-Universität zu Kiel
  3. 3.Klinik für Unfall-, Hand- und WiederherstellungschirurgieUniversitätsklinikum MünsterMünster

Personalised recommendations