Der Orthopäde

, Volume 34, Issue 4, pp 327–333

Das Allergiepotenzial von Implantatwerkstoffen auf Titanbasis

  • A. Schuh
  • P. Thomas
  • W. Kachler
  • J. Göske
  • L. Wagner
  • U. Holzwarth
  • R. Forst
Originalien

Zusammenfassung

Ziel

Ziel dieser Arbeit ist es, zu klären, ob in Reintitan oder in Titanlegierungen allergieauslösende Bestandteile nachweisbar sind.

Material und Methode

Es wurden von 5 internationalen Titanherstellern Rundscheiben zwischen 6 und 60 mm Durchmesser und 6 mm Dicke aus Reintitan, TiAl6Nb7 und TiAl6V4 einer Spektralanalyse unterzogen.

Ergebnisse

In allen Proben der Implantatwerkstoffe waren mit 0,012–0,034 Gew.-% geringe Nickelgehalte nachweisbar. Jodidtitan stellt mit 0,002 Gew.-% die Nachweisgrenze dar und ist somit als nickelfrei zu bezeichnen.

Schlussfolgerung

In allen Proben der Implantatwerkstoffe war Nickel nachweisbar. Diese niedrigen Gehalte an Nickel sind herstellungsprozessbedingt und vollständig im Gitter des Titans gelöst; sie könnten aber bei Patienten mit Nickelallergie ausreichen, um eine allergische Reaktion auszulösen. Diese wäre dann aber nicht direkt dem Titan oder seinen Legierungen, sondern der Nickelverunreinigung zuzuordnen. Weitere Untersuchungen über die Freisetzung der Legierungskomponenten und Reaktionsschwellen von Patienten sind erforderlich sowie—von Metallherstellerseite—zu alternativen Prozessen, um Reintitan und Titanlegierungen noch reiner bzw. nickelfrei herzustellen.

Schlüsselwörter

Titan Allergie Nickel Implantat Spektralanalyse 

Allergic potential of titanium implants

Abstract

Aim

The aim of this investigation is to evaluate the allergic potential of titanium and titanium alloys for surgical implant applications.

Materials and methods

Discs cut from rods supplied by five different titanium suppliers in several diameters were investigated. The samples were cp-Titanium as well as Ti6Al4 V and Ti6Al7Nb, 6 mm thick with a diameter of between 6 and 60 mm. The material was checked by optical spectral analysis.

Results

In all samples except iodidtitanium, a Nickel content of 0.012—0,034 wt% could be detected.

Conclusion

The low nickel content in the implant material results from the production process. The nickel atoms are in solid solution in the titanium lattice. Nickel allergic patients may develop hypersensitivity reactions even due to this low nickel content. Hence, this reaction may be falsely attributed to the titanium material itself. Measurements of ion concentration in the body are helpful for quantifying the maximum content of nickel in titanium materials for surgical implant applications. In addition, technical questions related to the production of nickel free titanium materials for allergic patients have to be solved.

Keywords

Titanium Allergy Nickel Implant Spectral analysis 

Literatur

  1. 1.
    ASTM F 67: Specification for unalloyed titanium for surgical implant applicationsGoogle Scholar
  2. 2.
    ASTM F 136: Specification for wrought titanium-6aluminum-4vanadium ELI alloy for surgical implant applicationsGoogle Scholar
  3. 3.
    ASTM F 1295: Specification for wrougth titanium-6aluminum-7niobium alloy for surgical implant applicationsGoogle Scholar
  4. 4.
    ASTM F 1713: Specification for wrought titanium-13niobium-13zirconium alloy for surgical implant applicationsGoogle Scholar
  5. 5.
    ASTM F 1813: Specification for wrought titanium-12molybdenum-6zirconium-2iron alloy for surgical implant applicationsGoogle Scholar
  6. 6.
    ASTM F 2066: Specification for wrought titanium-15molybdenum alloy for surgical implant applicationsGoogle Scholar
  7. 7.
    Barranco VP, Soloman H (1972) Eczematous dermatitis from nickel. JAMA 220: 1244CrossRefGoogle Scholar
  8. 8.
    Basketter DA, Whittle E, Monk B (2000) Possible allergy to complex titanium salt. Contact Dermatitis 42: 310–311Google Scholar
  9. 9.
    Benson MK, Goodwin PG, Brostoff J (1975) Metal sensitivity in patients with joint replacement arthroplasties. Br Med J 15: 374–375Google Scholar
  10. 10.
    Bircher AJ, Stern WB (2001) Allergic contact dermatitis from „titanium“ spectacle frames. Contact Dermatitis 45: 244–245Google Scholar
  11. 11.
    Black J (1992) Biological performance of materials. In: Allergic foreign-body response, Marcel Decker, New York, pp 184–199Google Scholar
  12. 12.
    Breton JL, Louis JM, Garnier G (1992) Asthma caused by hard metals: responsibility of titanium. Presse Med 21: 997Google Scholar
  13. 13.
    Brown SA, Merritt K (1981) Metal allergy and metallurgy. In: Weinstein A, Gibbons D, Brown S, Ruff W (eds) Implant retrieval: Material and biological analysis. Special publication No. 601, NBS, Washington/DC, pp 299–322Google Scholar
  14. 14.
    Carlsson AS, Magnusson B, Moller H (1980) Metal sensitivity in patients with metal-to-plastic total hip arthroplasties. Acta Orthop Scand 51: 57–62Google Scholar
  15. 15.
    Cook SD, McCluskey LC, Martin PC, Haddad RJ Jr (1991) Inflammatory response in retrieved noncemented porous-coated implants. Clin Orthop 264: 209–222Google Scholar
  16. 16.
    Christiansen K, Holmes K, Zilko PJ (1979) Metal sensitivity causing loosened joint prosthesis. Ann Rheum Dis 38: 476–480Google Scholar
  17. 17.
    Cramers M, Lucht (1977) Metal sensitivity in patients treated for tibial fractures with plates of stainless steel. Acta Orthop Scand 48: 245–249Google Scholar
  18. 18.
    Cupps TR, Fauci A (1981) Hypersensitivity vasculitis. In: Smith LH Jr (ed) Major problems in internal medicine, vol XXI. Saunders, Philadelphia, pp 50–70Google Scholar
  19. 19.
    DIN 17850: Reintitan, Chemische ZusammensetzungGoogle Scholar
  20. 20.
    Doerig MF, Odstrcilik E (2003) Gelenkspaarung Metall-Metall oder Keramik-Polyaethylen bei zementfreien Titanimplantaten der Hüfte. Ergibt Metasul nach 5–10 Jahren eine nachweisbare Reduktion der Abriebveränderungen? Z Orthop Ihre Grenzgeb 141 (S1): 62Google Scholar
  21. 21.
    Duchna HW, Nowack U, Merget R, Muhr G, Schultze-Werninghaus G (1998) Prospektive Untersuchung zur Bedeutung der Kontaktsensibilisierung durch Metallimplantate. Zentralbl Chir 123: 1271–1276Google Scholar
  22. 22.
    Elves MW, Wilson JN, Scales JT, Kemp HB (1975) Incidence of metal sensitivity in patients with total joint replacements. Br Med J 15: 376–378Google Scholar
  23. 23.
    Farronato G, Tirafili C, Alicino C, Santoro F (2002) Titanium appliances for allergic patients. J Clin Orthod 36: 676–679Google Scholar
  24. 24.
    Goh CL (1985) Prevalance of contact allergy by sex, race and age. Contact Dermatitis 14: 237–240Google Scholar
  25. 25.
    Goodman SB (1996) Does the immune system play a role in loosening and osteolysis of total joint replacements? J Long Term Eff Med Implants 6: 91–101PubMedGoogle Scholar
  26. 26.
    Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83-A: 428–436Google Scholar
  27. 27.
    Haug RH (1996) Retention of asymptomatic bone plates used for orthognathic surgery and facial fractures. J Oral Maxillofac Surg 54: 611–617Google Scholar
  28. 28.
    Holzwarth U (1993) Herstellung und Untersuchung von in der biomedizinischen Technik anwendbaren metallischen Werkstoffen mit niedrigem Elastizitätsmodul auf Basis Titan. Dissertation, Universität Erlangen-NürnbergGoogle Scholar
  29. 29.
    Holzwarth U (2001) Zementfreie Funktionsoberflächen für Titanimplantatwerkstoffe. Biomaterialien 2: 211–214Google Scholar
  30. 30.
    Kubba R, Taylor JS, Marks KE (1981) Cutaneous complications of orthopedic implants. A two-year prospective study. Arch Dermatol 117: 554–560CrossRefGoogle Scholar
  31. 31.
    Lalor PA, Revell PA, Gray AB, Wright S, Railton GT, Freeman MA (1991) Sensitivity to titanium. A cause of implant failure? J Bone Joint Surg Br 73: 25–28Google Scholar
  32. 32.
    Malo JL, Cartier A, Doepner M, Nieboer E, Evans S, Dolovich J (1982) Occupational asthma caused by nickel sulfate. J Allergy Clin Immunol 69: 55–59Google Scholar
  33. 33.
    Matthew I, Frame JW (1998) Allergic responses to titanium. J Oral Maxillofac Surg 56: 1466–1467Google Scholar
  34. 34.
    Mayor MB, Merritt K, Brown SA (1980) Metal allergy and the surgical patient. Am J Surg 139: 477–479Google Scholar
  35. 35.
    McKenzie AW, Aitken CV, Ridsdill-Smith R (1967) Urticaria after insertion of Smith-Petersen Vitallium nail. Br Med J 570: 36Google Scholar
  36. 36.
    Menne T, Nieboer E (1989) Metal contact dermatitis: a common and potentially debilitating disease. Endeavour 13: 117–122PubMedGoogle Scholar
  37. 37.
    Merritt K, Brown SA (1981) Metal sensitivity reactions to orthopedic implants. Int J Dermatol 20: 89–94Google Scholar
  38. 38.
    Merritt K, Brown SA (1996) Distribution of cobalt chromium wear and corrosion products and biologic reactions. Clin Orthop 329 [Suppl]: 233–243Google Scholar
  39. 39.
    Merritt K, Rodrigo JJ (1996) Immune response to synthetic materials. Sensitization of patients receiving orthopaedic implants. Clin Orthop 326: 71–79Google Scholar
  40. 40.
    Mitchell DL, Synnott SA, VanDercreek JA (1990) Tissue reaction involving an intraoral skin graft and CP titanium abutments: a clinical report. Int J Oral Maxillofac Implants 5: 79–84Google Scholar
  41. 41.
    Möller H (1990) Nickel dermatitis: problems solved and unsolved. Contact Dermatitis 23: 217–220Google Scholar
  42. 42.
    Munro-Ashman D, Miller AJ (1976) Rejection of metal to metal prosthesis and skin sensitivity to cobalt. Contact Dermatitis 2: 65–67Google Scholar
  43. 43.
    Polak L, Turk JL, Frey JR (1973) Studies on contact hypersensitivity to chromium compounds. Prog Allergy 17: 145–226Google Scholar
  44. 44.
    Rodgers K, Klykken P, Jacobs J, Frondoza C, Tomazic V, Zelikoff J (1997) Immunotoxicity of medical devices. Symposium overview. Fundam Appl Toxicol 36: 1–14CrossRefGoogle Scholar
  45. 45.
    Santavirta S, Konttinen YT, Hoikka V, Eskola A (1991) Immunopathological response to loose cementless acetabular components. J Bone Joint Surg Br 73: 38–42Google Scholar
  46. 46.
    Schaldach M (1992) Verträglichkeit implantatgeeigneter alloplastischer Werkstoffe im Organismus. Eur Arch Otorhinolaryngol [Suppl I]: 27–39Google Scholar
  47. 47.
    Schuh A, Thomas P, Holzwarth U, Zeiler G (2004) Bilaterale umschriebene Osteolyse nach zementierter Hüfttotalendoprothesenimplantation. Orthopäde 33: 727–731Google Scholar
  48. 48.
    Shirakawa T, Kusaka Y, Fujimura N, Goto S, Kato M, Heki S, Morimoto K (1989) Occupational asthma from cobalt sensitivity in workers exposed to hard metal dust. Chest 95: 29–37Google Scholar
  49. 49.
    Shirakawa T, Kusaka Y, Fujimura N, Kato M, Heki S, Morimoto K (1990) Hard metal asthma: cross immunological and respiratory reactivity between cobalt and nickel? Thorax 45: 267–271Google Scholar
  50. 50.
    Steinemann SG, Perren SM (1984) Titanium alloys as metallic biomaterials. Proceedings of the 5th World Conference on Titanium in Munich, p 1327Google Scholar
  51. 51.
    Suhonen R, Kanerva L (2001) Allergic contact dermatitis caused by palladium on titanium spectacle frames. Contact Dermatitis 44: 257–258Google Scholar
  52. 52.
    Summer B, Sander A, Przybilla B, Thomas P (2001) Molecular analysis of T-cell clonality with concomitant specific T-cell proliferation in vitro in nickel-allergic individuals. Allergy 56: 767–770Google Scholar
  53. 53.
    Swiontkowski MF, Agel J, Schwappach J, McNair P, Welch M (2001) Cutaneous metal sensitivity in patients with orthopaedic injuries. J Orthop Trauma 15: 86–89Google Scholar
  54. 54.
    Tan M, Suzuki H (1995) Usefulness of titanium implants for systemic contact dermatitis due to orthopaedic prostheses. Contact Dermatitis 33: 202Google Scholar
  55. 55.
    Thewes M, Kretschmer R, Gfesser M, Rakoski J, Nerlich M, Borelli S, Ring J (2001) Immunohistochemical characterization of the perivascular infiltrate cells in tissues adjacent to stainless steel implants compared with titanium implants. Arch Orthop Trauma Surg 121: 223–226Google Scholar
  56. 56.
    Thomas P (2003) Allergien durch Implantatwerkstoffe. Orthopäde 32: 60–64Google Scholar
  57. 57.
    Thomas P (2005) Impaired fracture healing and eczema from titanium based osteosynthesis, with corresponding T-cell hyperresponsiveness in vitro: A case of titanium hypersensitivity? Contact Dermatitis: im DruckGoogle Scholar
  58. 58.
    Thomas P, Thomas M, Summer B, Naumann T, Sander CA, Przybilla B (2000) Intolerance of osteosynthesis material: evidence of dichromate contact allergy with concomitant oligoklonal T-cell infiltrate and TH1-type cytokine expression in the peri-implantar tissue. Allergy 55: 969–972Google Scholar
  59. 59.
    Thull R (1991) Korrosionseigenschaften mit Titan-Niob-Oxinitrid beschichterter Dentallegierungen. DZZ 46: 712–717Google Scholar
  60. 60.
    Vernon-Roberts B, Freeman MAR (1976) Morphological and analytical studies of the tissues adjacent to joint prostheses: investigation into causes of loosening of prostheses. In: Schaldach M, Hohmann D (eds) Engineering in medicine, vol 1: Advances in artificial hip and knee joint technology. Springer, Stuttgart, pp 148–186Google Scholar
  61. 61.
    Walsh G, Mitchell JW (2002) Free surface nickel in CE-marked and non-CE-marked spectacle frames. Ophthalmic Physiol Opt 22: 166–171Google Scholar
  62. 62.
    Willert HG, Buchhorn GH, Hess T (1989) The significance of wear and material fatigue in loosening of hip prostheses. Orthopäde 18: 350–369Google Scholar
  63. 63.
    Willert HG, Buchhorn A, Fayyazi A, Lohmann CH (2000) Histopathologische Veränderungen bei Metall/Metall-Gelenken geben Hinweise auf eine zellvermittelte Überempfindlichkeit. Osteologie 9: 165–179Google Scholar
  64. 64.
    Willert HG, Buchhorn A, Fayyazi A, Lohmann CH (2001) Histopathological changes in tissues surrounding metal/metal joints—signs of delayed type of hypersensitivity (DTH)? In: Rieker C (ed) World Tribology Forum in Arthroplasty, pp 167–180Google Scholar
  65. 65.
    Yamauchi R, Morita A, Tsuji T (2000) Pacemaker dermatitis from titanium. Contact Dermatitis 42: 52–53Google Scholar
  66. 66.
    Zwicker U (1974) Titan und Titanlegierungen, Springer, Berlin Heidelberg New York, S 5–8Google Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • A. Schuh
    • 1
    • 7
  • P. Thomas
    • 2
  • W. Kachler
    • 3
  • J. Göske
    • 3
  • L. Wagner
    • 4
  • U. Holzwarth
    • 5
  • R. Forst
    • 6
  1. 1.Orthopädische Klinik RummelsbergSchwarzenbruck
  2. 2.Klinik und Poliklinik für Dermatologie und Allergologie der Ludwig-Maximilians-Universität München
  3. 3.Zentrum für WerkstoffanalytikLauf GmbHLauf
  4. 4.Institut für Werkstoffkunde und WerkstofftechnikTU Clausthal-Zellerfeld
  5. 5.Med-Titan®Erlangen
  6. 6.Lehrstuhl für Orthopädie mit Orthopädischer Chirurgie der Friedrich-Alexander-Universität Erlangen-Nürnberg
  7. 7.Orthopädische Klinik RummelsbergSchwarzenbruck

Personalised recommendations