Advertisement

Der Orthopäde

, Volume 33, Issue 12, pp 1361–1372 | Cite as

In-vitro- und In-vivo-Knochenregenerierung durch mesenchymale Stammzellen aus dem Nabelschnurblut

  • M. Jäger
  • M. Sager
  • A. Knipper
  • Ö. Degistirici
  • J. Fischer
  • G. Kögler
  • P. Wernet
  • R. Krauspe
Leitthema

Zusammenfassung

Hintergrund: Vor wenigen Jahren gelang die Isolierung mesenchymaler Stammzellen aus dem Nabelschnurblut. Es stellt sich die Frage, wieweit sich diese Zellpopulation durch ihre osteoblastäre Differenzierungspotenz für ein Tissue Engineering mit potenzieller klinischer Anwendung eignet. Methoden: Aus humanem Nabelschnurblut Neugeborener isolierte unrestringierte, somatische Stammzellen (USSC) wurden osteo-, chondro- und adipoblastär stimuliert. Anschließend erfolgte die Inkubation von USSC auf einem Kollagen-I/III-Trägermaterial, um dessen osteoblastäre Induktivitätspotenz immunzytochemisch zu untersuchen. Zur Evaluierung immunologischer Effekte nach Xenotransplantation wurde als Kleintiermodell die athyme Nacktratte ausgewählt. Durch Transplantation in eine knöcherne Defektzone wurde das Überleben, „Homing“ sowie die Osteogenese von humanen USSC untersucht. Ergebnisse: Die mesenchymale Multipotenz von USSC konnte in vitro nachgewiesen werden. Der verwendete Kollagen-I/III-Träger förderte die osteoblastäre In-vitro-Differenzierung. Humane USSC überlebten in verschiedenen Organen der Nacktratte und zeigten eine osteoblastäre Differenzierung. Schlussfolgerung: Multipotente mesenchymale Stammzellen aus dem Nabelschnurblut (USSC) differenzieren sowohl in vitro auf einem Kollagen-I/III-Träger als auch in vivo in der athymen Nacktratte osteoblastär.

Schlüsselwörter

Somatische Stammzelle Knochen Nabelschnurblut Osteoblast 

In vivo and in vitro bone regeneration from cord blood derived mesenchymal stem cells

Abstract

Background: Mesenchymal stem cells with an osteoblastic differentiating potency are investigated in regard of probable tissue engineering for further clinical application. The following report describes the use of cord blood derived stem cells as an alternative to other stem cell populations for bone regenerating tissue engineering. Methods: To demonstrate the multipotency of cord blood derived mesenchymal stem cells, unrestringated somatic stem cells (USSC) were isolated from cord blood and underwent an osteo-, chondro- and adipoblastic in vitro stimulation. To evaluate the osteoinductive potency of a porcine collagen I/III cell carrier USSC were incubated on this matrix. To investigate the in vivo effects of human USSC an athymic rat model was developed. These cells were transplanted into a femoral defect. Results: Cord blood derived mesenchymal stem cells (USSC) have an in vitro multipotency and show adipo-, chondro- and osteogenic differentiation. The porcine collagen I/III carrier promoted an osteoblastic differentiation. USSC survived after xenotransplantation in an athymic rat and differentiated into osteoblasts filling the bony defect zone. Conclusion: Human USSC are a mesenchymal multipotent stem cell population that shows osteoblastic differentiation onto a collagen I/III carrier in vitro as well as in an athymic rat in vivo.

Keywords

Somatic stem cell Bone Cord blood Osteoblast 

Notes

Danksagung

Die Autoren der vorliegenden Arbeit bedanken sich bei den folgenden Personen für ihre Unterstützung des orthopädischen Stammzellprojektes: Frau Dr. vet. med. A. Treiber und Frau I. Schrey, Tierversuchanlage, Fr. S. Lensing-Höhn, Forschungslabor der orthopädischen Klinik der Heinrich-Heine-Universität Düsseldorf.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Alliston T, Choy L, Ducy P, Karsenty G, Derynck R (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 20: 2254–2272CrossRefPubMedGoogle Scholar
  2. 2.
    Benito AI, Diaz MA, Gonzalez-Vicent M, Sevilla J, Madero L (2004) Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant 33: 675–690CrossRefPubMedGoogle Scholar
  3. 3.
    Bialek P, Kern B, Yang X et al. (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6: 423–435CrossRefPubMedGoogle Scholar
  4. 4.
    Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop 355 [Suppl]: 247–256CrossRefGoogle Scholar
  5. 5.
    Caplan AI (1994) The mesengenic process. Clin Plast Surg 21: 429–435PubMedGoogle Scholar
  6. 6.
    Chamberlain JR, Schwarze U, Wang PR et al. (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303: 1198–1201CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng F, Zou P, Yang H, Yu Z, Zhong Z (2003) Induced differentiation of human cord blood mesenchymal stem/progenitor cells into cardiomyocyte-like cells in vitro. J Huazhong Univ Sci Technolog Med Sci 23: 154–157PubMedGoogle Scholar
  8. 8.
    Cohnheim J (1867) Arch Pathol Anat Physiol Klin Med 40: 1. In: Wohlrab F, Henoch U (Hrsg) (1988) The life and work of Carl Weigert (1845–1904) in Leipzig 1878–1885. Zentralbl Allg Pathol 134: 743–751Google Scholar
  9. 9.
    Czyz J, Wiese C, Rolletschek A, Blyszczuk P, Cross M, Wobus AM (2003) Potential of embryonic and adult stem cells in vitro. Biol Chem 384: 1391–409CrossRefPubMedGoogle Scholar
  10. 10.
    Eppig JJ, Kozak LP, Eicher EM, Stevens LC (1977) Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature 269: 517–518PubMedGoogle Scholar
  11. 11.
    Friedenstein AJ, Gorskaja U, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4: 267–274PubMedGoogle Scholar
  12. 12.
    Gu K, Zhang L, Jin T, Rutherford RB (2004) Identification of potential modifiers of Runx2/Cbfa1 activity in C2C12 cells in response to bone morphogenetic protein-7. Cells Tissues Organs 176: 28–40CrossRefPubMedGoogle Scholar
  13. 13.
    Hou L, Cao H, Wang D, Wei G, Bai C, Zhang Y, Pei X (2003) Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro. Int J Hematol 78: 256–261PubMedGoogle Scholar
  14. 14.
    Jäger M, Wild A, Krauspe R (2002) Pluripotente Mesenchymale Stammzellen und Osteogenese (I): Grundlagen. Osteologie 11: 55–66Google Scholar
  15. 15.
    Jäger M, Wild A, Krauspe R (2002) Pluripotente Mesenchymale Stammzellen und Osteogenese (II): Biomaterialien und klinische Anwendung. Osteologie 11: 78–87Google Scholar
  16. 16.
    Jäger M, Wild A, Wernet P, Krauspe R (2002) Osteogenetisches Potential unrestringierter somatischer Stammzellen (USSC) aus dem Nabelschnurblut Neugeborener. Z Orthop 140: S11Google Scholar
  17. 17.
    Jäger M, Wild A, Fuß M, Werner A, Krauspe R (2002) Vorteile von Biomatrices bei der Chondrogenese von pluripotenten mesenchymalen Stammzellen. Z Orthop 140: 681–689CrossRefPubMedGoogle Scholar
  18. 18.
    Jäger M, Wild A, Lensing-Hohn S, Krauspe R (2003) Influence of different culture solutions on osteoblastic differentiation in cord blood and bone marrow derived progenitor cells. Biomed Tech (Berl) 48: 241–244Google Scholar
  19. 19.
    Jäger M, Wilke A (2003) Comprehensive biocompatibility testing of a new PMMA bone cement versus conventional PMMA cement in vitro. J Biomat Sci 14: 1283–1298CrossRefGoogle Scholar
  20. 20.
    Kakinuma S, Tanaka Y, Chinzei R et al. (2003) Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells 21: 217–227CrossRefPubMedGoogle Scholar
  21. 21.
    Katagiri T, Takahashi N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8: 147–159CrossRefPubMedGoogle Scholar
  22. 22.
    Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A (2004) Id2 and id3 define the potency of cell proliferation and differentiation responses to transforming growth factor Beta and bone morphogenetic protein. Mol Cell Biol 24: 4241–4254CrossRefPubMedGoogle Scholar
  23. 23.
    Lee OK, Kuo TK, Chen WM, Lee DK, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103: 1669–1675CrossRefGoogle Scholar
  24. 24.
    Lian JB, Javed A, Zaidi SK et al. (2003) Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 14: 1–42Google Scholar
  25. 25.
    McKinney-Freeman SL, Majka SM, Jackson KA, Norwood K, Hirschi KK, Goodell MA (2003) Altered phenotype and reduced function of muscle-derived hematopoietic stem cells. Exp Hematol 31: 806–814CrossRefPubMedGoogle Scholar
  26. 26.
    Noguchi T, Stevens LC (1982) Primordial germ cell proliferation in fetal testes in mouse strains with high and low incidences of congenital testicular teratomas. J Natl Cancer Inst 69: 907–913PubMedGoogle Scholar
  27. 27.
    Noia G, Pierelli L, Bonanno G et al. (2004) The intracoelomic route: a new approach for in utero human cord blood stem cell transplantation. Fetal Diagn Ther 19: 13–22CrossRefPubMedGoogle Scholar
  28. 28.
    Noort WA, Kruisselbrink AB, in’t Anker PS et al. (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 30: 870–878CrossRefGoogle Scholar
  29. 29.
    Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147CrossRefPubMedGoogle Scholar
  30. 30.
    Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18: 1842–1853PubMedGoogle Scholar
  31. 31.
    Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 8: 740–748CrossRefPubMedGoogle Scholar
  32. 32.
    Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 97: 11.307–11.312CrossRefGoogle Scholar
  33. 33.
    Sciaudone M, Gazzerro E, Priest L, Delany AM, Canalis E (2003) Notch 1 impairs osteoblastic cell differentiation. Endocrinology 144: 5631–5639CrossRefPubMedGoogle Scholar
  34. 34.
    Stevens LC (1984) Spontaneous and experimentally induced testicular teratomas in mice. Cell Differ 15: 69–74CrossRefGoogle Scholar
  35. 35.
    Wang FS, Yang KD, Wang CJ, Huang HC, Chio CC, Hsu TY, Ou CY (2004) Shockwave stimulates oxygen radical-mediated osteogenesis of the mesenchymal cells from human umbilical cord blood. J Bone Miner Res 19: 973–982PubMedGoogle Scholar
  36. 36.
    Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‚stem‘ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121: 368–374PubMedGoogle Scholar
  37. 37.
    Xu RH, Chen X, Li DS et al. (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20: 1261–1264CrossRefPubMedGoogle Scholar
  38. 38.
    Yu M, Xiao Z, Shen L, Li L (2004) Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. Br J Haematol 124: 666–675PubMedGoogle Scholar
  39. 39.
    Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109: 1405–1415CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2004

Authors and Affiliations

  • M. Jäger
    • 1
    • 5
  • M. Sager
    • 2
  • A. Knipper
    • 3
  • Ö. Degistirici
    • 3
  • J. Fischer
    • 4
  • G. Kögler
    • 4
  • P. Wernet
    • 4
  • R. Krauspe
    • 1
  1. 1.Orthopädische UniversitätsklinikHeinrich-Heine-Universität Düsseldorf
  2. 2.TierversuchsanlageHeinrich-Heine-Universität Düsseldorf
  3. 3.Kourion Therapeutics AGLangenfeld
  4. 4.Institut für Transplantationsdiagnostik und ZelltherapieHeinrich-Heine-Universität Düsseldorf
  5. 5.Orthopädisches ForschungslaborOrthopädische Universitätsklinik, Heinrich-Heine UniversitätDüsseldorf

Personalised recommendations