Der Orthopäde

, Volume 33, Issue 4, pp 397–404 | Cite as

Besonderheiten der implantatassoziierten Infektion in der orthopädischen Chirurgie

Von der Pathophysiologie zu maßgeschneiderten Präventionsstrategien
  • J. M. Schierholz
  • C. Morsczeck
  • N. Brenner
  • D. P. König
  • N. Yücel
  • M. Korenkov
  • E. Neugebauer
  • A. F. E. Rump
  • G. Waalenkamp
  • J. Beuth
  • G. Pulverer
  • S. Arens

Zusammenfassung

Der zunehmende Einsatz von Implantatmaterialien führt zu einem Anstieg des Infektionsrisikos in der modernen Orthopädie. Ist ein Implantatmaterial erst einmal infiziert werden, muss—da die Pathophysiologie dieser speziellen Art von Infektion zu einer relativen Unempfindlichkeit konventioneller Antibiotikatherapien führt—in der Regel das Material explantiert werden. Die Folgen sowohl für den Patienten als auch für unser Gesundheitssystem sind gravierend.

Mindestens ein Drittel der Infektionen lässt sich durch striktes hygienisches Arbeiten verhindern. Aufgrund auch geringster Inokulationsmengen als Basis für eine Materialkolonisation und -infektion muss von einem großen Anteil „physiologischer Infektionen“ ausgegangen werden. Deshalb ist die Entwicklung infektionsresistenter Implantatmaterialien eine medizinische Notwendigkeit. Moderne Konzepte solcher Materialien beinhalten antimikrobielle „Drug-delivery-Systeme“, welche in der Lage sind, unphysiologisch hohe Konzentrationen antimikrobieller Substanzen in die Mirkoumgebung des Implantats abzugeben, um damit die phänotypische Resistenz adhärenter Mikroorganismen zu überlisten.

Schlüsselwörter

Implantatinfektion Infektionsresistenz Kontrollierte Wirkstofffreisetzung Infektionsprävention 

Special aspects of implant-associated infection in orthopedic surgery

Abstract

One of the most important risk factors in orthopedic surgery is implant-associated infection. Adhesion and colonization mediated implant infections are extremely resistant to antibiotics and host defences and frequently persist until the biomaterial or foreign body is removed, which is standard therapy. Tissue damage caused by surgery and foreign body implantation increases the susceptibility to infections, activates host defences and stimulates the generation of inflammatory mediators including radicals that are further aggravated by bacterial activity and toxins.

Nearly one third of implant-related infections can be prevented by strictly following established infection control guidelines. However, a significant number of implant-associated infections remains. The escape of bacteria from host defence and antibiotic therapy makes the development of infection-resistant materials as antimicrobial drug delivery systems feasible. This concept consists of the sustained delivery of antimicrobial drugs into the local microenvironment of implants avoiding systemic side effects exceeding usual systemic concentrations by magnitudes of order.

Keywords

Implant infection Infection resistance Controlled drug delivery Infection prevention strategies 

Literatur

  1. 1.
    Albers BA, Patka P, Haarman HJ, Kostense PJ (1994) [Cost effectiveness of preventive antibiotic administration for lowering risk of infection by 0.25%]. Unfallchirurg 97: 625–628PubMedGoogle Scholar
  2. 2.
    Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M (1996) Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br 78: 647–651Google Scholar
  3. 3.
    Bach AW, Hansen ST (1989) Plates versus external fixation in severe open tibial shaft fractures. A randomized trial. Clin Orthop 241: 89–94PubMedGoogle Scholar
  4. 4.
    Boxma H, Broekhuizen T, Patka P, Oosting H (1996) Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: the Dutch Trauma Trial. Lancet 347: 1133–1137PubMedGoogle Scholar
  5. 5.
    Esenwein SA, Robert K, Kollig E, Ambacher T, Kutscha-Lissberg F, Muhr G (2001) [Long-term results after resection arthroplasty according to Girdlestone for treatment of persisting infections of the hip joint]. Chirurg 72: 1336–1343CrossRefPubMedGoogle Scholar
  6. 6.
    Gristina AG, Giridhar G, Gabriel BL, Naylor PT, Myrvik QN (1993) Cell biology and molecular mechanisms in artificial device infections. Int J Artif Organs 16: 755–763PubMedGoogle Scholar
  7. 7.
    Hansis M, Arens S, Wingenfeld C (1997) [Rate of infection in trauma surgery. An overview based on recent German language literature]. Unfallchirurg 100: 457–464CrossRefPubMedGoogle Scholar
  8. 8.
    Heitemeyer U, Hax PM (1990) Wirtschaftliche Aspekte bei der Knocheninfektion. In: Burri C, Neugebauer R (Hrsg) Infektion von Knochen und Gelenken. Prophylaxe, Therapie, soziale, wirtschaftliche und rechtliche Aspekte. Huber, Bern Stuttgart TorontoGoogle Scholar
  9. 9.
    Klussmann R (1990) [Psychosocial problems from the viewpoint of psychosomatic medicine]. Akt Probl Chir Orthop 34: 153–158Google Scholar
  10. 10.
    Konig DP, Perdreau-Remington F, Rutt J, Hilgers RD, Schierholz JM (1999) Adherence to and accumulation of S. epidermidis on different biomaterials due to extracellular slime production. In vitro comparison of a slime-producing strain (Rp 62 A) and its isogenic slime negative mutant (M7). Zentralbl Bakteriol 289: 355–364PubMedGoogle Scholar
  11. 11.
    Konig DP, Schierholz JM, Hilgers RD, Bertram C, Perdreau-Remington F, Rutt J (2001) In vitro adherence and accumulation of Staphylococcus epidermidis RP 62 A and Staphylococcus epidermidis M7 on four different bone cements. Langenbecks Arch Surg 386: 328–332CrossRefPubMedGoogle Scholar
  12. 12.
    Konig DP, Schierholz JM, Munnich U, Rutt J (2001) Treatment of staphylococcal implant infection with rifampicin-ciprofloxacin in stable implants. Arch Orthop Trauma Surg 121: 297–299CrossRefPubMedGoogle Scholar
  13. 13.
    Littenberg B, Weinstein LP, McCarren M, Mead T, Swiontkowski MF, Rudicel SA, Heck D (1998) Closed fractures of the tibial shaft. A meta-analysis of three methods of treatment. J Bone Joint Surg Am 80: 174–183PubMedGoogle Scholar
  14. 14.
    Martone W, Jarvis WR, Culver DH, Haley RW (1992) Incidence and nature of endemic and epidemic nosokomial infections. 577–592Google Scholar
  15. 15.
    Matter P, Schutz M, Buhler M, Ungersbock A, Perren S (1994) [Clinical results with the limited contact DCP plate of titanium—a prospective study of 504 cases]. Z Unfallchir Versicherungsmed 87: 6-13PubMedGoogle Scholar
  16. 16.
    Muhr G (1996) Deutsche Gesellschaft für Unfallchirurgie. Chirurg 62: 846–851Google Scholar
  17. 17.
    Nast-Kolb D, Betz A, Schweiberer L (1991) Der Wandel in der Unfallchirurgie der letzten 10 Jahre—ein Beitrag zur Infektionsprophylaxe Chirurg 62: 846–851Google Scholar
  18. 18.
    Schierholz JM, Beuth J (2000) Sophisticated medical devices as local drug-delivery systems. Med Device Technol 11: 12–17Google Scholar
  19. 19.
    Schierholz JM, Beuth J (2001) Implant infections: a haven for opportunistic bacteria. J Hosp Infect 49: 87–93CrossRefPubMedGoogle Scholar
  20. 20.
    Schierholz JM, Beuth J, Konig D, Nurnberger A, Pulverer G (1999) Antimicrobial substances and effects on sessile bacteria. Zentralbl Bakteriol 289: 165–177PubMedGoogle Scholar
  21. 21.
    Schierholz JM, Beuth J, Pulverer G (1999) Adherent bacteria and activity of antibiotics. J Antimicrob Chemother 43: 158–160CrossRefPubMedGoogle Scholar
  22. 22.
    Schierholz JM, Beuth J, Pulverer G, Konig DP (1999) Silver-containing polymers. Antimicrob Agents Chemother 43: 2819–2820PubMedGoogle Scholar
  23. 23.
    Schierholz JM, Beuth J, Pulverer G, Konig DP (1999) The efficacy of silver alloy-coated urinary catheters in preventing urinary tract infection. Am J Med 107: 534–535CrossRefPubMedGoogle Scholar
  24. 24.
    Schierholz JM, Pulverer G (1998) Investigation of a rifampin, fusidic-acid and mupirocin releasing silicone catheter. Biomaterials 19: 2065–2074CrossRefPubMedGoogle Scholar
  25. 25.
    Schierholz JM, Rump AF, Pulverer G, Beuth J (1998) Anti-infective catheters: novel strategies to prevent nosocomial infections in oncology. Anticancer Res 18: 3629–3638PubMedGoogle Scholar
  26. 26.
    Schierholz JM, Steinhauser H, Rump AF, Berkels R, Pulverer G (1997) Controlled release of antibiotics from biomedical polyurethanes: morphological and structural features. Biomaterials 18: 839–844CrossRefPubMedGoogle Scholar
  27. 27.
    Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279: 1537–1541PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. M. Schierholz
    • 1
    • 9
  • C. Morsczeck
    • 1
  • N. Brenner
    • 1
  • D. P. König
    • 2
  • N. Yücel
    • 3
  • M. Korenkov
    • 3
  • E. Neugebauer
    • 3
  • A. F. E. Rump
    • 4
  • G. Waalenkamp
    • 5
  • J. Beuth
    • 6
  • G. Pulverer
    • 7
  • S. Arens
    • 8
  1. 1.Forschungszentrum Caesar (Center of Advanced European Studies and Research)Bonn
  2. 2.Orthopädische KlinikUniversität Köln
  3. 3.Institut für BiochemieChirurgische Universitätsklinik Köln-Merheim
  4. 4.Schiffahrtsmedizinisches Institut der MarineKronshagen
  5. 5.Department of OrthopaedicsAcademic HospitalMaastricht
  6. 6.Institut für Wissenschaftliche Evaluation naturheilkundlicher VerfahrenUniversität Köln
  7. 7.Institut für Mikrobiologie und HygieneUniversität Köln
  8. 8.BG-Klinik „Bergmannsheil“Klinik der Ruhr-Universität Bochum
  9. 9.Helixor Heilmittel GmbH & CoRosenfeld

Personalised recommendations