Der Orthopäde

, Volume 33, Issue 1, pp 48–55 | Cite as

Knochen und Knochen-Zement-Belastungen in der thorakolumbalen Wirbelsäule nach Kyphoplastik

Eine Finite-Element-Studie
  • L. M. VillarragaPh.D.
  • P. A. Cripton
  • A. J. Bellezza
  • U. Berlemann
  • S. M. Kurtz
  • A. A. Edidin
Leitthema

Zusammenfassung

Die vorliegende Studie quantifiziert die Belastungen in behandelten sowie unbehandelten Wirbelkörpern nach Kyphoplastik. Es wurden dreidimensionale (3D-) Finite-Element-Modelle humaner Wirbelkörper der Niveaus T11, T12, L1 und L2 zur Analyse der Belastungen innerhalb des Knochens und Knochenzements benutzt. Um den Einfluss einer Kyphoplastik auf den benachbarten Wirbelkörper zu simulieren, wurde ein validiertes Wirbelsäulensegment T12-L1 berechnet. Im Modell des einzelnen Wirbelkörpers hatten Änderungen des Knochenzementmoduls wenig Einfluss auf die Belastungen des Zements oder Knochens. Die Anwesenheit von Knochenzement hatte wenig Effekt auf die Größe oder Verteilung der Belastungen im benachbarten Wirbelkörper T12.

Diese Studie quantifiziert die Belastungen in Knochenzement und Knochen in Wirbelkörpern nach Kyphoplastik unter in-vivo-ähnlichen Bedingungen. Die Anwesenheit von Knochenzement scheint einen nur geringen Effekt auf die Belastungen im direkt benachbarten Wirbelkörper zu haben.

Schlüsselwörter

Kyphoplastik Biomechanik Knochenzement Finite-Element-Analyse 

Abstract

The study quantified the stress levels in treated and untreated vertebral bodies following kyphoplasty. Three-dimensional FE models of treated and untreated T11, T12, L1, and L2 vertebral bodies were evaluated to examine the stress levels within the bone and bone cement. A validated T12-L1 model was used to investigate the effect of kyphoplasty treatment on adjacent vertebral stresses and strains. Using the single vertebral models, bone cement modulus changes had minimal effect on the stresses in the bone or the cement. The presence of bone cement had a minimal effect on the stress magnitudes or distribution in the adjacent T12 vertebra.

This study provides quantification of the stress levels in bone cement and bone in vertebral bodies treated with kyphoplasty under in vivo-like loading conditions. The presence of bone cement immediately following kyphoplasty has only a slight effect on the stress magnitudes or distributions in adjacent vertebrae.

Keywords

Kyphoplasty Biomechanics Bone cement Finite element study 

Literatur

  1. 1.
    Baroud G, Steffen T (2001) Load shift after augmenting osteoporic vertebrae. J Biomech 34: 27–90Google Scholar
  2. 2.
    Barr JD, Barr MS, Lemley TJ, McCann RT (2000) Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 25: 923–928PubMedGoogle Scholar
  3. 3.
    Belkoff SM, Mathis JM, Erbe EM, Fenton DC (2000) Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 25: 1061–1064CrossRefPubMedGoogle Scholar
  4. 4.
    Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84: 748–752PubMedGoogle Scholar
  5. 5.
    Cao KD, Grimm MJ, Yang KH (2001) Load sharing within a human lumbar vertebral body using the finite element method. Spine 26: 253–260CrossRefGoogle Scholar
  6. 6.
    Frei H, Oxland TR, Rathonyi GC, Nolte LP (2001) The Effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine 26: 2080–2089CrossRefPubMedGoogle Scholar
  7. 7.
    Garfin SR, Yuan HA, Reilly MA (2001) New technologies in spine—kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26: 1511–1515PubMedGoogle Scholar
  8. 8.
    Goel VK, Kim YE, Lim TH, Weinstein JN (1988) An analytical investigation of the mechanics of spinal instrumentation. Spine 13: 1003–1011PubMedGoogle Scholar
  9. 9.
    Hansson TH, Keller TS, Panjabi MM (1987) A study of the compressive properties of lumbar vertebral trabeculae: effects of tissue characteristics. Spine 12: 56–62PubMedGoogle Scholar
  10. 10.
    Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE (1997) Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol 18: 1897–1904PubMedGoogle Scholar
  11. 11.
    Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK (2001) Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res 19: 977–984CrossRefPubMedGoogle Scholar
  12. 12.
    Lewis G (1997) Properties of acrylic bone cement: State of the art review. Appl Biomater 38: 155–182CrossRefGoogle Scholar
  13. 13.
    Lieberman IH, Dudeney S, Reinhardt MK, Bell G (2001) Initial outcome and efficacy of „kyphoplasty“ in the treatment of painful osteoporotic vertebral compression fractures. Spine 26: 1631–1638PubMedGoogle Scholar
  14. 14.
    Liebschner MAK, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26: 1547–1554CrossRefPubMedGoogle Scholar
  15. 15.
    Lim TH, Brebach GT, Renner SM et al. (2002) Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 27: 1297–1302CrossRefPubMedGoogle Scholar
  16. 16.
    Lindahl O (1976) Mechanical properties of dried defatted spongy bone. Acta Orthop Scand 47: 11–19PubMedGoogle Scholar
  17. 17.
    Margulies JY, Payzer A, Nyska M, Neuwirth MG, Floman Y, Robin GC (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop 1996: 145–152Google Scholar
  18. 18.
    McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17: 66–73PubMedGoogle Scholar
  19. 19.
    Mizrahi J, Silva MJ, Keaveny TM, Edwards WT, Hayes WC (1993) Finite-element stress analysis of the normal and osteoporotic lumbar vertebral body. Spine 18: 2088–2096PubMedGoogle Scholar
  20. 20.
    Nachemson AL (1981) Disc pressure measurements. Spine 6: 93–97PubMedGoogle Scholar
  21. 21.
    Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine 17: 299–306PubMedGoogle Scholar
  22. 22.
    Panjabi MM, Takata K, Goel V, Frederico D, Oxland T, Duranceau J, Krag M (1991) Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16: 888–901PubMedGoogle Scholar
  23. 23.
    Polikeit A, Nolte LP, Ferguson SJ (2001) The effect of vertebroplasty on the load transfer in a functional spinal unit. J Biomech 34: 10–11Google Scholar
  24. 24.
    Rohlmann A, Bergmann G, Graichen F, Weber U (1997) Comparison of loads on internal spinal fixation devices measured in vitro and in vivo. Med Eng Phys 19: 539–546CrossRefPubMedGoogle Scholar
  25. 25.
    Schultz A, Anderson G, Ortengren R, Haderspeck K, Nachemson A (1982) Loads on the lumbar spine. J Bone Joint Surg Am 64: 713–725PubMedGoogle Scholar
  26. 26.
    Silva MJ, Keaveny TM, Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22: 140–150CrossRefPubMedGoogle Scholar
  27. 27.
    Theodorou DJ, Theodorou SJ, Duncan TD, Garfin SR, Wong WH (2002) Percutaneous balloon kyphoplasty for the correction of spinal deformity in painful vertebral body compression fractures. Clin Imag 26: 1–5CrossRefGoogle Scholar
  28. 28.
    Tohmeh AG, Mathis JM, Fenton DC, Levine AM, Belkoff SM (1999) Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 24: 1772–1776CrossRefPubMedGoogle Scholar
  29. 29.
    Voor MJ, Anderson RC, Hart RT (1997) Stress analysis of halo pin insertion by non-linear finite element modeling. J Biomech 30: 903–909CrossRefPubMedGoogle Scholar
  30. 30.
    Watts NB, Harris ST, Genant HK (2001) Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty. Osteoporos Int 12: 429–437CrossRefPubMedGoogle Scholar
  31. 31.
    White AA, Panjabi MM (1990) Clinical biomechanics of the spine. Lippincot, PhiladelphiaGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • L. M. VillarragaPh.D.
    • 1
    • 3
    • 5
  • P. A. Cripton
    • 1
    • 3
  • A. J. Bellezza
    • 1
  • U. Berlemann
    • 4
  • S. M. Kurtz
    • 1
    • 3
  • A. A. Edidin
    • 2
    • 3
  1. 1.Exponent Inc.Philadelphia
  2. 2.Kyphon Inc.Bordeaux Dr. SunnyvaleCA
  3. 3.School of Biomedical Engineering Science and Health SystemsDrexel UniversityPhiladelphia
  4. 4.Unfallchirurgische KlinikMedizinische HochschuleHannover
  5. 5.Exponent Inc.PhiladelphiaCA

Personalised recommendations