Advertisement

Myome – was liegt da in der DNA?

Erkenntnisse der Molekulargenetik vermitteln einen neuen Blick auf die Pathogenese
  • Jörn BullerdiekEmail author
  • Wolfgang Küpker
Leitthema
  • 17 Downloads

Zusammenfassung

In den letzten Jahren haben neue Erkenntnisse das Verständnis der molekularen Pathogenese der Uterusleiomyome deutlich erweitert. Am Beginn der Myomentstehung stehen sog. Treibermutationen. Treibermutationen sind somatische Mutationen, die ursächlich für die Umwandlung einer normalen Zelle in eine Tumorzelle sind. Die Kenntnis verschiedener Treibermutationen ermöglicht die Unterscheidung zwischen 2 großen molekularen Untergruppen der Myome, die sich auch klinisch und histopathologisch als verschiedene Entitäten darstellen. Für eine dieser beiden Gruppen muss zudem eine zwar sehr geringe, aber doch vorhandene Wahrscheinlichkeit der Transformation zum STUMP („smooth muscle tumor of uncertain malignant potential“) und zum Leiomyosarkom diskutiert werden. Die Transformation ist dabei vermutlich durch Hinzutreten bestimmter sekundärer Treibermutationen initiiert. Die Identifizierung neuer genetischer Marker stellt wichtige Werkzeuge für die Differenzialdiagnose glattmuskulärer uteriner Tumoren bereit. Diese neuen Erkenntnisse sind auch von unmittelbarer Bedeutung für die Risikoeinschätzung minimal-invasiver Eingriffe, die ein Morcellement einzelner Tumoren oder des Organs erforderlich machen. Es ist begründet anzunehmen, dass das Risiko, dabei ein zuvor nicht erkanntes Malignom zu morzellieren, direkt von der Anzahl der vorhandenen Tumoren abhängt. Bei an sich großer Schwankung der entsprechenden Risikoangaben erschwert das den Vergleich verschiedener Studien.

Schlüsselwörter

Leiomyome Treibermutationen Diagnostische Marker Morzellierung Sarkome 

Myoma—is it all in the genes?

New insights into the molecular pathogenesis of uterine leiomyomas

Abstract

In the past few years highly successful research into the molecular pathogenesis of uterine leiomyomas has been carried out. Tumorigenesis is initiated by so-called driver mutations, i. e., somatic mutations that cause the transformation of a normal cell into a tumor cell. Based on mutually exclusive driver mutations two large subgroups of leiomyomas can be distinguished which also differ with respect to their clinical behavior and histological presentation. For one of these subgroups a low but existing probability to undergo transformation to a STUMP (smooth muscle tumor of uncertain malignant potential) and to a leiomyosarcoma has to be considered. In these latter cases transformation likely results from the additional occurrence of certain secondary driver mutations. The identification of novel genetic markers does not only offer important tools for the differential diagnosis of uterine smooth muscle tumors but these insights are also of immediate relevance for the assessment of risks associated with power morcellation as part of minimally invasive hysterectomy or myomectomy, respectively. It seems reasonable to assume that the risk of an unexpected malignancy directly depends on the number of tumors per patient. At least in part, this may explain the enormous variances of the risk figures given by different studies.

Keywords

Leiomyoma Driver mutations Diagnostic markers Morcellation Sarcoma 

Notes

Danksagung

Die Autoren danken Frau Dr. U. Bock-Steinweg und Frau Dr. B. Rommel, Bremen, für die kritische Durchsicht und Kommentierung des Manuskriptes.

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Bullerdiek war als Referent für die Firma Gedeon Richter tätig. W. Küpker gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Asher HR, Schoenberg Fejzo M, Tkachenko A et al (1995) Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82:57–65.  https://doi.org/10.1016/0092-8674(95)90052-7 CrossRefGoogle Scholar
  2. 2.
    Bertsch E, Qiang W, Zhang Q et al (2014) MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol 27:1144–1153.  https://doi.org/10.1038/modpathol.2013.243 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bloch J, Holzmann C, Koczan D et al (2017) Factors affecting the loss of MED12-mutated leiomyoma cells during in vitro growth. Oncotarget 8:34762–34772.  https://doi.org/10.18632/oncotarget.16711 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brölmann H, Tanos V Grimbizis G et al (2015) Options on fibroid morcellation: a literature review. Gynecol Surg 12:3–15.  https://doi.org/10.1007/s10397-015-0878-4 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bullerdiek J, Rommel B (2018) Factors targeting MED12 to drive tumorigenesis? F1000Res 7:359.  https://doi.org/10.12688/f1000research.14227.1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cani AK, Hovelson DH, McDaniel AS et al (2015) Next-gen sequencing exposes frequent MED12 mutations and actionable therapeutic targets in phyllodes tumors. Mol Cancer Res 13:613–619.  https://doi.org/10.1158/1541-7786.MCR-14-0578 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chau KY, Patel UA, Lee KL et al (1995) The gene for the human architectural transcription factor HMGI-C consists of five exons each coding for a distinct functional element. Nucleic Acids Res 23:4262–4266CrossRefGoogle Scholar
  8. 8.
    Croce S, Ribeiro A, Brulard C et al (2015) Uterine smooth muscle tumor analysis by comparative genomic hybridization: a useful diagnostic tool in challenging lesions. Mod Pathol 28:1001–1010.  https://doi.org/10.1038/modpathol.2015.3 CrossRefPubMedGoogle Scholar
  9. 9.
    Gross KL, Neskey DM, Manchanda N (2003) HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes Chromosomes Cancer 38(1):68–79.  https://doi.org/10.1002/gcc.10240 CrossRefPubMedGoogle Scholar
  10. 10.
    Holzmann C, Markowski DN, Bartnitzke S et al (2015) A rare coincidence of different types of driver mutations among uterine leiomyomas (UL). Mol Cytogenet 8:76.  https://doi.org/10.1186/s13039-015-0177-9 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Holzmann C, Markowski DN, von Leffern I et al (2015) Patterns of chromosomal abnormalities that can improve diagnosis of uterine smooth muscle tumors. Anticancer Res 35:6445–6456PubMedGoogle Scholar
  12. 12.
    Holzmann C, Saager C, Mechtersheimer G et al (2018) Malignant transformation of uterine leiomyoma to myxoid leiomyosarcoma after morcellation associated with ALK rearrangement and loss of 14q. Oncotarget 9:27595–27604.  https://doi.org/10.18632/oncotarget.25137 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kämpjärvi K, Mäkinen N, Kilpivaara O et al (2012) Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer 107:1761–1765.  https://doi.org/10.1038/bjc.2012.428 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kazmierczak B, Hennig Y, Wanschura S et al (1995) Description of a novel fusion transcript between HMGI-C, a gene encoding for a member of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase gene. Cancer Res 55:6038–6039PubMedGoogle Scholar
  15. 15.
    Kazmierczak B, Rosigkeit J, Wanschura S et al (1996) HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene 12:515–521PubMedGoogle Scholar
  16. 16.
    Kiechle-Schwarz M, Sreekantaiah C, Berger CS et al (1991) Nonrandom cytogenetic changes in leiomyomas of the female genitourinary tract. A report of 35 cases. Cancer Genet Cytogenet 53:125–136CrossRefGoogle Scholar
  17. 17.
    Leung F, Terzibachian JJ, Gay C et al (2009) Hystérectomies pour léiomyomes présumés : la crainte du léiomyosarcome doit-elle faire appréhender la voie d’abord chirurgicale autre que laparotomique ? Gynecol Obstet Fertil 37:109–114.  https://doi.org/10.1016/j.gyobfe.2008.09.022 CrossRefPubMedGoogle Scholar
  18. 18.
    Lim WK, Ong CK, Tan J et al (2014) Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet 46:877–880.  https://doi.org/10.1038/ng.3037 CrossRefPubMedGoogle Scholar
  19. 19.
    Liu S, Yin P, Kujawa SA et al (2018) Progesterone receptor integrates the effects of mutated MED12 and altered DNA methylation to stimulate RANKL expression and stem cell proliferation in uterine leiomyoma. Oncogene.  https://doi.org/10.1038/s41388-018-0612-6 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mäkinen N, Aavikko M, Heikkinen T et al (2016) Exome sequencing of uterine leiomyosarcomas identifies frequent mutations in TP53, ATRX, and MED12. Plos Genet 12:e1005850.  https://doi.org/10.1371/journal.pgen.1005850 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mäkinen N, Mehine M, Tolvanen J et al (2011) MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science 334:252–255.  https://doi.org/10.1126/science.1208930 CrossRefPubMedGoogle Scholar
  22. 22.
    Markowski DN, Bartnitzke S, Löning T et al (2012) MED12 mutations in uterine fibroids—their relationship to cytogenetic subgroups. Int J Cancer 131:1528–1536.  https://doi.org/10.1002/ijc.27424 CrossRefPubMedGoogle Scholar
  23. 23.
    Markowski DN, Helmke BM, Bartnitzke S et al (2014) Uterine fibroids—do we deal with more than one disease? Int J Gynecol Pathol 33(6):568–572.  https://doi.org/10.1097/PGP.0000000000000096 CrossRefPubMedGoogle Scholar
  24. 24.
    Markowski DN, Huhle S, Nimzyk R et al (2013) MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosomes Cancer 52:297–304.  https://doi.org/10.1002/gcc.22029 CrossRefPubMedGoogle Scholar
  25. 25.
    Markowski DN, Tadayyon M, Bartnitzke S et al (2014) Cell cultures in uterine leiomyomas: Rapid disappearance of cells carrying MED12 mutations. Genes Chromosomes Cancer 53:317–323.  https://doi.org/10.1002/gcc.22142 CrossRefGoogle Scholar
  26. 26.
    Matsubara A, Sekine S, Yoshida M et al (2013) Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology 62:657–661.  https://doi.org/10.1111/his.12039 CrossRefPubMedGoogle Scholar
  27. 27.
    Mehine M, Kaasinen E, Mäkinen N et al (2013) Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med 369:43–53.  https://doi.org/10.1056/NEJMoa1302736 CrossRefPubMedGoogle Scholar
  28. 28.
    Van Der Meulen JF, Pijnenborg JMA, Boomsma CM et al (2016) Parasitic myoma after laparoscopic morcellation: a systematic review of the literature. BJOG 123:69–75.  https://doi.org/10.1111/1471-0528.13541 CrossRefGoogle Scholar
  29. 29.
    Nilbert M, Heim S, Mandahl N et al (1988) Karyotypic rearrangements in 20 uterine leiomyomas. Cytogenet Cell Genet 49:300–304CrossRefGoogle Scholar
  30. 30.
    Oliva E (2016) Practical issues in uterine pathology from banal to bewildering: the remarkable spectrum of smooth muscle neoplasia. Mod Pathol 29(Suppl 1):S104–S120.  https://doi.org/10.1038/modpathol.2015.139 CrossRefPubMedGoogle Scholar
  31. 31.
    Parker W (2016) Parasitic myomas may be more common than we think. BJOG 123:76.  https://doi.org/10.1111/1471-0528.13573 CrossRefPubMedGoogle Scholar
  32. 32.
    Pérot G, Croce S, Ribeiro A et al (2012) MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS ONE 7:e40015.  https://doi.org/10.1371/journal.pone.0040015 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pfarr N, Kriegsmann M, Sinn P et al (2015) Distribution of MED12 mutations in fibroadenomas and phyllodes tumors of the breast-implications for tumor biology and pathological diagnosis. Genes Chromosomes Cancer 54:444–452.  https://doi.org/10.1002/gcc.22256 CrossRefPubMedGoogle Scholar
  34. 34.
    Piscuoglio S, Murray M, Fusco N et al (2015) MED12 somatic mutations in fibroadenomas and phyllodes tumours of the breast. Histopathology 67:719–729.  https://doi.org/10.1111/his.12712 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Piscuoglio S, Ng CKY, Murray M et al (2016) Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and TERT promoter hotspot mutations and TERT gene amplification as likely drivers of progression. J Pathol 238:508–518.  https://doi.org/10.1002/path.4672 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ravegnini G, Mariño-Enriquez A, Slater J et al (2013) MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol 26:743–749.  https://doi.org/10.1038/modpathol.2012.203 CrossRefPubMedGoogle Scholar
  37. 37.
    Rogalla P, Drechsler K, Frey G et al (1996) HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol 149:775–779PubMedPubMedCentralGoogle Scholar
  38. 38.
    Rommel B, Holzmann C, Bullerdiek J (2016) Malignant mesenchymal tumors of the uterus—time to advocate a genetic classification. Expert Rev Anticancer Ther 16:1155–1166.  https://doi.org/10.1080/14737140.2016.1233817 CrossRefPubMedGoogle Scholar
  39. 39.
    Schoenberg Fejzo M, Ashar HR, Krauter KS et al (1996) Translocation breakpoints upstream of the HMGIC gene in uterine leiomyomata suggest dysregulation of this gene by a mechanism different from that in lipomas. Genes Chromosomes Cancer 17:1–6. https://doi.org/10.1002/(SICI)1098-2264(199609)17:1〈1::AID-GCC1〉3.0.CO;2-0CrossRefGoogle Scholar
  40. 40.
    Schoenmakers EF, Wanschura S, Mols R et al (1995) Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet 10:436–444.  https://doi.org/10.1038/ng0895-436 CrossRefPubMedGoogle Scholar
  41. 41.
    Seidman MA, Oduyebo T, Muto MG et al (2012) Peritoneal dissemination complicating morcellation of uterine mesenchymal neoplasms. PLoS ONE 7:e50058.  https://doi.org/10.1371/journal.pone.0050058 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Staats B, Bonk U, Wanschura S et al (1996) A fibroadenoma with a t(4;12) (q27;q15) affecting the HMGI-C gene, a member of the high mobility group protein gene family. Breast Cancer Res Treat 38:299–303CrossRefGoogle Scholar
  43. 43.
    Vanni R, Nieddu M, Paoli R, Lecca U (1989) Uterine leiomyoma cytogenetics. I. Rearrangements of chromosome 12. Cancer Genet Cytogenet 37:49–54.  https://doi.org/10.1016/0165-4608(89)90073-3 CrossRefPubMedGoogle Scholar
  44. 44.
    Wu X, Serna VA, Thomas J et al (2017) Subtype-specific tumor-associated fibroblasts contribute to the pathogenesis of uterine leiomyoma. Cancer Res 77:6891–6901.  https://doi.org/10.1158/0008-5472.CAN-17-1744 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yatsenko SA, Mittal P, Wood-Trageser MA et al (2017) Highly heterogeneous genomic landscape of uterine leiomyomas by whole exome sequencing and genome-wide arrays. Fertil Steril 107:457–466.e9.  https://doi.org/10.1016/j.fertnstert.2016.10.035 CrossRefPubMedGoogle Scholar
  46. 46.
    Yoshida M, Ogawa R, Yoshida H et al (2015) TERT promoter mutations are frequent and show association with MED12 mutations in phyllodes tumors of the breast. Br J Cancer 113:1244–1248.  https://doi.org/10.1038/bjc.2015.326 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yoshida M, Sekine S, Ogawa R et al (2015) Frequent MED12 mutations in phyllodes tumours of the breast. Br J Cancer 112:1703–1708.  https://doi.org/10.1038/bjc.2015.116 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Medizinische GenetikUniversitätsmedizin RostockRostockDeutschland
  2. 2.HumangenetikUniversität BremenBremenDeutschland
  3. 3.Abteilung für minimal-invasive Gynäkologie, Endometriose und ReproduktionsmedizinKlinikum Mittelbaden, Baden-Baden BühlBühlDeutschland

Personalised recommendations