Advertisement

Der Gynäkologe

, Volume 52, Issue 1, pp 30–34 | Cite as

Mikrobiota und Genese des kolorektalen Karzinoms

  • V. Andresen
  • P. LayerEmail author
Leitthema
  • 33 Downloads

Zusammenfassung

Es gilt als gesichert, dass die intestinale Mikrobiota sowohl bei der Gesunderhaltung als auch bei der Genese zahlreicher Krankheiten eine kausale, zumindest aber modulierende Rolle spielt. Dies schließt funktionelle, entzündliche und metabolische Erkrankungen ebenso ein wie (prä-)maligne Mechanismen. Demnach sind Tumoren des Gastrointestinaltrakts, des Pankreas und der Leber mit einer veränderten Mikrobiota assoziiert, wobei manche dieser Alterationen als pathogenetisch kausal angesehen werden. In besonderer Weise gilt dies für das kolorektale Karzinom, dessen enge Beziehungen zur Mikrobiota exemplarisch dargestellt werden.

Schlüsselwörter

Intestinum Pathogenese  Gastrointestinales Mikrobiom Karzinogenese Kolorektale Neoplasien 

Microbiota and the genesis of colorectal cancer

Abstract

There is solid evidence that the intestinal microbiota is involved in maintenance of health, as well as in the pathophysiology of a variety of diseases. These include functional, inflammatory, and metabolic disorders, but also premalignant and malignant mechanisms. Thus, tumors of the gastrointestinal tract, the pancreas, and the liver have been shown to be associated with an altered microbiota, and it is assumed that some of these changes may be causal in the specific pathogenesis. Exemplary evidence has been accumulated for microbiotal participation in the carcinogenesis of colorectal cancers, which is outlined in this article.

Keywords

Intestine Pathogenesis  Gastrointestinal microbiome Carcinogenesis Colorectal neoplasms 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

V. Andresen und P. Layer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379CrossRefGoogle Scholar
  2. 2.
    Kumamoto CA (2016) The fungal mycobiota: small numbers, large impacts. Cell Host Microbe 19(6):750–751CrossRefGoogle Scholar
  3. 3.
    Carding SR, Davis N, Hoyles L (2017) Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 46(9):800–815CrossRefGoogle Scholar
  4. 4.
    Festi D et al (2014) Gut microbiota and metabolic syndrome. World J Gastroenterol 20(43):16079–16094CrossRefGoogle Scholar
  5. 5.
    Yang J, Yu J (2018) The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 9(5):474–487CrossRefGoogle Scholar
  6. 6.
    Suez J et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514(7521):181–186CrossRefGoogle Scholar
  7. 7.
    Rothschild D et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215CrossRefGoogle Scholar
  8. 8.
    Zitvogel L, Pietrocola F, Kroemer G (2017) Nutrition, inflammation and cancer. Nat Immunol 18(8):843–850CrossRefGoogle Scholar
  9. 9.
    Mima K et al (2017) The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett 402:9–15CrossRefGoogle Scholar
  10. 10.
    Mima K et al (2017) The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surg Oncol 26(4):368–376CrossRefGoogle Scholar
  11. 11.
    Wroblewski LE, Peek RM Jr. (2016) Helicobacter pylori, cancer, and the gastric microbiota. Adv Exp Med Biol 908:393–408CrossRefGoogle Scholar
  12. 12.
    Fan X et al (2018) Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67(1):120–127CrossRefGoogle Scholar
  13. 13.
    Gagniere J et al (2016) Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 22(2):501–518CrossRefGoogle Scholar
  14. 14.
    Garcia-Castillo V et al (2016) Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol 65(12):1347–1362CrossRefGoogle Scholar
  15. 15.
    Wong SH et al (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Baillieres Clin Gastroenterol 153(6):1621–1633Google Scholar
  16. 16.
    Belcheva A et al (2014) Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158(2):288–299CrossRefGoogle Scholar
  17. 17.
    Castellarin M et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22(2):299–306CrossRefGoogle Scholar
  18. 18.
    Kostic AD et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22(2):292–298CrossRefGoogle Scholar
  19. 19.
    Kostic AD et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2):207–215CrossRefGoogle Scholar
  20. 20.
    Gholizadeh P, Eslami H, Kafil HS (2017) Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother 89:918–925CrossRefGoogle Scholar
  21. 21.
    Shiryaev SA et al (2013) Substrate cleavage profiling suggests a distinct function of bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface. J Biol Chem 288(48):34956–34967CrossRefGoogle Scholar
  22. 22.
    Tsoi H et al (2017) Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Baillieres Clin Gastroenterol 152(6):1419–1433Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Israelitisches KrankenhausHamburgDeutschland

Personalised recommendations