Advertisement

Der Gynäkologe

, Volume 52, Issue 1, pp 25–29 | Cite as

Das veränderte Mikrobiom in Uterus und Plazenta

  • Viktoria von Schönfeldt
  • Udo JeschkeEmail author
Leitthema
  • 141 Downloads

Zusammenfassung

Dass der Mensch nicht nur aus humanen Zellen besteht, ist mittlerweile bekannt. Er ist vielmehr ein Holobiont – eine Gemeinschaft verschiedener Lebewesen, die sich zum gegenseitigen Vorteil zusammengeschlossen haben. Die Gesamtheit der Mikroorganismen, die den Menschen besiedeln und so zu unserer Entwicklung und Gesundheit beitragen, wird als Mikrobiom bezeichnet. Erst die modernen Methoden des „Next-Generation-Sequencing“ (NGS) ermöglichen es uns, dieses Mikrobiom exakter zu untersuchen. Insbesondere die Sequenzierung des Gens der 16S-rRNA erlaubt eine schnelle und genaue Kartierung aller Mikroorganismen, die ein bestimmtes Organ besiedeln. Aktuelle Publikationen, insbesondere zu den Bakterienprofilen von Uterus und Plazenta, verändern schon jetzt unser Verständnis der Rolle von Mikroorganismen für die Gesundheit, aber auch bei Infektionen in der Schwangerschaft oder bei wiederholtem Implantationsversagen und ebnen so den Weg zu möglichen neuen Behandlungsverfahren.

Schlüsselwörter

Uterus Plazenta Frühgeburt Gene Implantation 

Changes in the microbiome of the uterus and placenta

Abstract

Human bodies are not solely composed of human cells. Much more, they are assemblages of different species forming host-–microbe symbioses with mutual benefits. The collective of microorganisms that reside in and on the human body is termed microbiota or microbiome. Newly developed next generation sequencing methods (NGS) using the 16S-rRNA-gene-sequencing approach allow for the precise mapping of the human microbiome of different organs. Recent publications on the microbiota of the uterus and placenta will improve our understanding of the role microorganisms play in health and disease and might pave the way for new therapeutic approaches.

Keywords

Uterus Placenta Preterm birth  Genes Implantation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

V. vonSchönfeldt und U. Jeschke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Weinstein L, Howard JH (1937) The Incidence of the Doderlein Vaginal Bacillus During the Post-Climacterium. Yale J Biol Med 10(2):185–190PubMedPubMedCentralGoogle Scholar
  2. 2.
    Weigl L (1979) Chronik einer Klinik. Von der Gebärstube zur ersten Frauenklinik der Universität München. Vol. 1, München. https://epub.ub.uni-muenchen.de/14728/. Zugegriffen: 11.07.2018Google Scholar
  3. 3.
    Perez-Munoz ME et al (2017) A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5(1):48CrossRefGoogle Scholar
  4. 4.
    Verstraelen H et al (2016) Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1–2 region of the 16S rRNA gene. PeerJ 4:e1602CrossRefGoogle Scholar
  5. 5.
    Forsum U et al (1978) Genital occurrence of oral microbiota. Acta Derm Venereol 58(4):353–356PubMedGoogle Scholar
  6. 6.
    Klindworth A et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1CrossRefGoogle Scholar
  7. 7.
    Mitchell CM et al (2015) Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol 212(5):611e1–611e9CrossRefGoogle Scholar
  8. 8.
    Teisala K (1987) Endometrial microbial flora of hysterectomy specimens. Eur J Obstet Gynecol Reprod Biol 26(2):151–155CrossRefGoogle Scholar
  9. 9.
    Cowling P et al (1992) Bacterial colonization of the non-pregnant uterus: a study of pre-menopausal abdominal hysterectomy specimens. Eur J Clin Microbiol Infect Dis 11(2):204–205CrossRefGoogle Scholar
  10. 10.
    Inzunza J et al (2005) Germfree status of mice obtained by embryo transfer in an isolator environment. Lab Anim 39(4):421–427CrossRefGoogle Scholar
  11. 11.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273CrossRefGoogle Scholar
  12. 12.
    Shima T et al (2010) Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol 85(2):121–129CrossRefGoogle Scholar
  13. 13.
    Benner M et al (2018) How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 24(4):393–415CrossRefGoogle Scholar
  14. 14.
    Wira CR et al (2014) Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. Am J Reprod Immunol 72(2):236–258CrossRefGoogle Scholar
  15. 15.
    Kai-Larsen Y, Gudmundsson GH, Agerberth B (2014) A review of the innate immune defence of the human foetus and newborn, with the emphasis on antimicrobial peptides. Acta Paediatr 103(10):1000–1008CrossRefGoogle Scholar
  16. 16.
    Moreno I et al (2016) Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 215(6):684–703CrossRefGoogle Scholar
  17. 17.
    Chen C et al (2017) The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 8(1):875CrossRefGoogle Scholar
  18. 18.
    Satokari R et al (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48(1):8–12CrossRefGoogle Scholar
  19. 19.
    Fardini Y et al (2010) Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 78(4):1789–1796CrossRefGoogle Scholar
  20. 20.
    Han YW et al (2006) Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J Clin Microbiol 44(4):1475–1483CrossRefGoogle Scholar
  21. 21.
    Bahrani-Mougeot FK et al (2008) Diverse and novel oral bacterial species in blood following dental procedures. J Clin Microbiol 46(6):2129–2132CrossRefGoogle Scholar
  22. 22.
    Ikegami A, Chung P, Han YW (2009) Complementation of the fadA mutation in Fusobacterium nucleatum demonstrates that the surface-exposed adhesin promotes cellular invasion and placental colonization. Infect Immun 77(7):3075–3079CrossRefGoogle Scholar
  23. 23.
    Ganu RS, Ma J, Aagaard KM (2013) The role of microbial communities in parturition: is there evidence of association with preterm birth and perinatal morbidity and mortality? Am J Perinatol 30(8):613–624CrossRefGoogle Scholar
  24. 24.
    Han YW et al (2004) Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect Immun 72(4):2272–2279CrossRefGoogle Scholar
  25. 25.
    Aagaard K et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):237ra65CrossRefGoogle Scholar
  26. 26.
    Aagaard KM (2014) Author response to comment on “the placenta harbors a unique microbiome”. Sci Transl Med 6(254):254lr3CrossRefGoogle Scholar
  27. 27.
    Kliman HJ (2014) Comment on “the placenta harbors a unique microbiome”. Sci Transl Med 6(254):254le4CrossRefGoogle Scholar
  28. 28.
    Schwalm ND 3rd, Groisman EA (2017) Navigating the gut buffet: control of polysaccharide utilization in bacteroides spp. Trends Microbiol 25(12):1005–1015CrossRefGoogle Scholar
  29. 29.
    Colliou N et al (2017) Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. J Clin Invest 127(11):3970–3986CrossRefGoogle Scholar
  30. 30.
    Mor G, Kwon JY (2015) Trophoblast-microbiome interaction: a new paradigm on immune regulation. Am J Obstet Gynecol 213(4):S131–S177CrossRefGoogle Scholar
  31. 31.
    Johnson-Robbins LA et al (1996) Staphylococcus epidermidis sepsis in the intensive care nursery: a characterization of risk associations in infants 〈 1,000 g. Biol Neonate 69(4):249–256CrossRefGoogle Scholar
  32. 32.
    Goleva E et al (2013) The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 188(10):1193–1201CrossRefGoogle Scholar
  33. 33.
    Tanner AC et al (2011) Microbiota of severe early childhood caries before and after therapy. J Dent Res 90(11):1298–1305CrossRefGoogle Scholar
  34. 34.
    Kosikowska U et al (2016) Changes in the prevalence and biofilm formation of Haemophilus influenzae and Haemophilus parainfluenzae from the respiratory microbiota of patients with sarcoidosis. BMC Infect Dis 16(1):449CrossRefGoogle Scholar
  35. 35.
    Tabatabaei N et al (2018) Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG.  https://doi.org/10.1111/1471-0528.15299 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinikum der LMU MünchenMünchenDeutschland
  2. 2.Klinik und Poliklinik für Frauenheilkunde und GeburtshilfeKlinikum der LMU MünchenMünchenDeutschland

Personalised recommendations