Der Gynäkologe

, Volume 46, Issue 1, pp 56–62

Rolle der Angiogenese und ihrer Inhibitoren in der Gynäkologie

Von der Embryonalentwicklung bis zur Tumorgenese und Metastasierung
  • I. Alkatout
  • N. Maass
  • W. Jonat
  • C. Mundhenke
  • C. Schem
Gynäkologie aktuell

Zusammenfassung

Die Angiogenese bezeichnet die Neubildung von Blutgefäßen, die durch Sprossungs- oder Spaltungsvorgänge des Gefäßsystems entstehen. Solide Tumoren sind in ihrem Wachstum von einem sie umgebenden mitwachsenden Kapillarnetz abhängig, das den Tumor mit Nährstoffen und Sauerstoff versorgt. Die pathophysiologische Rolle der Angiogenese ist für viele benigne (Endometriose, Menorrhagie, Leiomyomatose, ovarielles Überstimulationssyndrom, Präeklampsie und plazentares Hypoperfusionssyndrom) und maligne (vor allem das metastasierte und therapierefraktäre Mammakarzinom, das Ovarialkarzinom, das Tubenkarzinom sowie das primäre peritoneale Karzinom) gynäkologischen Erkrankungen nachgewiesen. Angiogeneseabhängige Erkrankungen können mit Hilfe antiangiogenetisch wirksamer Therapeutika behandelt werden. Aufgrund der substantiellen Nebenwirkungen dieser oft nur in Kombination mit einer klassischen Chemotherapie wirksamen Medikamente ist der Einsatz etablierter Angiogeneseinhibitoren ausgewählten, meist malignen Ekrankungsbildern vorbehalten. Zu diesen zählen vor allem das metastasierte und therapierefraktäre Mammakarzinom, das Ovarialkarzinom, das Tubenkarzinom und das primäre peritoneale Karzinom. Die Arbeit gewährt einen Überblick über den Kenntnisstand in der antiangiogenetischen Behandlung in der Gynäkologie und über potenzielle weitere Einsatzmöglichkeiten neuer Medikamente in diesem Zusammenhang.

Schlüsselwörter

Angiogeneseinhibitoren Wachstumsfaktoren Tumorentstehung Metastasierung Neovaskularisation 

The role of angiogenesis and its inhibitors in gynecology

From physiological embryonic development to tumorigenesis and metastasis

Abstract

Angiogenesis describes the neoformation of blood vessels which develop by budding and sprouting of the existing vessel system. Solid tumor growth is dependent on the surrounding growing capillary network providing the tumor with essential nutrients and oxygen. The pathophysiological role of angiogenesis could be shown for multiple benign (endometriosis, menorrhagia, leiomyomatosis, ovarian hyperstimulation syndrome, preeclampsia and placental hypoperfusion syndrome) and malignant (especially metastasized and therapy-refractory breast cancer, ovarian cancer, cancer of the fallopian tube and the primary peritoneal cancer) diseases. Diseases that are very much dependent on (neo) angiogenesis can be treated with various anti-angiogenic agents. Due to the broad spectrum of side effects of established angiogenesis inhibitors which are mostly given in combination with chemotherapeutic agents, this therapeutic approach is mostly limited to malignant diseases, such as breast cancer, ovarian cancer, cancer of the fallopian tube and primary peritoneal carcinoma. This review provides an overview of the current state of knowledge in the anti-angiogenic therapy of gynecological diseases and will give a perspective of potential future implications of new therapeutic agents.

Keywords

Neovascularization Angiogenesis inhibitors Growth factors Tumorgenesis Metastasis 

Literatur

  1. 1.
    Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8(8):604–617 doi:nrc2353 [pii] 10.1038/nrc2353 [doi]PubMedCrossRefGoogle Scholar
  2. 2.
    Becker ST, Rennekampff HO, Alkatout I et al (2010) Comparison of vacuum and conventional wound dressings for full thickness skin grafts in the minipig model. Int J Oral Maxillofac Surg 39(7):699–704 doi:S0901–5027(10)00110–4 [pii] 10.1016/j.ijom.2010.03.016PubMedCrossRefGoogle Scholar
  3. 3.
    Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660 doi:10.1038/nm0603–653 nm0603–653 [pii]PubMedCrossRefGoogle Scholar
  4. 4.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027 doi:JCO.2005.06.081 [pii] 10.1200/JCO.2005.06.081PubMedCrossRefGoogle Scholar
  5. 5.
    Cascone T, Heymach JV (2012) Targeting the angiopoietin/Tie2 pathway: cutting tumor vessels with a double-edged sword? J Clin Oncol 30(4):441–444 doi:JCO.2011.38.7621 [pii] 10.1200/JCO.2011.38.7621 [doi]PubMedCrossRefGoogle Scholar
  6. 6.
    Hidalgo M, Pierson AS, Holden SN et al (2001) Therapeutic angiogenesis inhibitors in the treatment of cancer. Adv Intern Med 47:159–190PubMedGoogle Scholar
  7. 7.
    Gescher DM, Haensel A, Meyhofer-Malik A, Malik E (2003) The importance of angiogenesis for the pathogenesis of endometriosis. Zentralbl Gynakol 125(7–8):243–246 doi:10.1055/s-2003–42278 [doi]Google Scholar
  8. 8.
    Taylor HS, Osteen KG, Bruner-Tran KL et al (2011) Novel therapies targeting endometriosis. Reprod Sci 18(9):814–823 doi:1933719111410713 [pii] 10.1177/1933719111410713PubMedCrossRefGoogle Scholar
  9. 9.
    Krikun G, Hu Z, Osteen K et al (2010) The immunoconjugate „icon“ targets aberrantly expressed endothelial tissue factor causing regression of endometriosis. Am J Pathol 176(2):1050–1056 doi:S0002–9440(10)60414–2 [pii] 10.2353/ajpath.2010.090757PubMedCrossRefGoogle Scholar
  10. 10.
    Hewett P, Nijjar S, Shams M et al (2002) Down-regulation of angiopoietin-1 expression in menorrhagia. Am J Pathol 160(3):773–780 doi:S0002–9440(10)64899–7 [pii] 10.1016/S0002–9440(10)64899–7 [doi]PubMedCrossRefGoogle Scholar
  11. 11.
    Anania CA, Stewart EA, Quade BJ et al (1997) Expression of the fibroblast growth factor receptor in women with leiomyomas and abnormal uterine bleeding. Mol Hum Reprod 3(8):685–691PubMedCrossRefGoogle Scholar
  12. 12.
    Mattioli M, Barboni B, Turriani M et al (2001) Follicle activation involves vascular endothelial growth factor production and increased blood vessel extension. Biol Reprod 65(4):1014–1019PubMedCrossRefGoogle Scholar
  13. 13.
    Levin ER, Rosen GF, Cassidenti DL et al (1998) Role of vascular endothelial cell growth factor in Ovarian Hyperstimulation Syndrome. J Clin Invest 102(11):1978–1985 doi:10.1172/JCI4814 [doi]PubMedCrossRefGoogle Scholar
  14. 14.
    Kaiser UB (2003) The pathogenesis of the ovarian hyperstimulation syndrome. N Engl J Med 349(8):729–732 doi:10.1056/NEJMp038106 [doi] 349/8/729 [pii]PubMedCrossRefGoogle Scholar
  15. 15.
    Lain KY, Roberts JM (2002) Contemporary concepts of the pathogenesis and management of preeclampsia. JAMA 287(24):3183–3186. doi:jct10018 [pii]PubMedCrossRefGoogle Scholar
  16. 16.
    Maynard S, Epstein FH, Karumanchi SA (2008) Preeclampsia and angiogenic imbalance. Annu Rev Med 59:61–78 doi:10.1146/annurev.med.59.110106.214058 [doi]PubMedCrossRefGoogle Scholar
  17. 17.
    Maynard SE, Min JY, Merchan J et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111(5):649–658 doi:10.1172/JCI17189 [doi]PubMedGoogle Scholar
  18. 18.
    Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350 (7):672–683. doi:10.1056/NEJMoa031884 [doi] NEJMoa031884 [pii]PubMedCrossRefGoogle Scholar
  19. 19.
    Schiettecatte J, Russcher H, Anckaert E et al (2010) Multicenter evaluation of the first automated Elecsys sFlt-1 and PlGF assays in normal pregnancies and preeclampsia. Clin Biochem 43(9):768–770 doi:S0009–9120(10)00073–1 [pii] 10.1016/j.clinbiochem.2010.02.010 [doi]PubMedCrossRefGoogle Scholar
  20. 20.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364 doi:S0092–8674(00)80108–7 [pii]PubMedCrossRefGoogle Scholar
  21. 21.
    Daly ME, Makris A, Reed M, Lewis CE (2003) Hemostatic regulators of tumor angiogenesis: a source of antiangiogenic agents for cancer treatment? J Natl Cancer Inst 95(22):1660–1673PubMedCrossRefGoogle Scholar
  22. 22.
    Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404 doi:nrclinonc.2009.52 [pii] 10.1038/nrclinonc.2009.52PubMedCrossRefGoogle Scholar
  23. 23.
    Cook KM, Figg WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60(4):222–243 doi:caac.20075 [pii] 10.3322/caac.20075PubMedCrossRefGoogle Scholar
  24. 24.
    Almog N (2010) Molecular mechanisms underlying tumor dormancy. Cancer Lett 294(2):139–146 doi:S0304–3835(10)00141–2 [pii] 10.1016/j.canlet.2010.03.004 [doi]PubMedCrossRefGoogle Scholar
  25. 25.
    Alkatout I, Kabelitz D, Kalthoff H, Tiwari S (2008) Prowling wolves in sheep’s clothing: the search for tumor stem cells. Biol Chem 389(7):799–811 doi:10.1515/BC.2008.094, 10.1515/BC.2008.094 [pii]PubMedCrossRefGoogle Scholar
  26. 26.
    Alkatout I, Kalthoff H (2008) Tumor stem cells: how to define them and how to find them? In: Bosch TCG (Hrsg) Stem cells: from hydra to man. 1 Aufl. Springer Science, The Netherlands, S 165–185Google Scholar
  27. 27.
    Khosravi Shahi P, Fernandez Pineda I (2008) Tumoral angiogenesis: review of the literature. Cancer Invest 26(1):104–108 doi:788753026 [pii] 10.1080/07357900701662509 [doi]CrossRefGoogle Scholar
  28. 28.
    Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514. doi:nrc2868 [pii] 10.1038/nrc2868PubMedCrossRefGoogle Scholar
  29. 29.
    Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18 doi:10.1053/sonc.2002.37263 S0093775402503353 [pii]PubMedGoogle Scholar
  30. 30.
    Kerbel RS (2011) Reappraising antiangiogenic therapy for breast cancer. Breast 20(Suppl 3):S56–60 doi:S0960–9776(11)70295–8 [pii] 10.1016/S0960–9776(11)70295–8 [doi]PubMedCrossRefGoogle Scholar
  31. 31.
    Brufsky AM, Hurvitz S, Perez E et al (2011) RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29(32):4286–4293 doi:JCO.2010.34.1255 [pii] 10.1200/JCO.2010.34.1255 [doi]PubMedCrossRefGoogle Scholar
  32. 32.
    Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28(20):3239–3247 doi:JCO.2008.21.6457 [pii] 10.1200/JCO.2008.21.6457 [doi]PubMedCrossRefGoogle Scholar
  33. 33.
    Cobleigh MA, Langmuir VK, Sledge GW et al (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30(5 Suppl 16):117–124 doi:S0093775403004469 [pii]PubMedCrossRefGoogle Scholar
  34. 34.
    Rugo HS, Barry TW, Moreno-Aspitia A et al (2012) CALGB 40502/NCCTG N063H: Randomized phase III trial of weekly paclitaxel (P) compared to weekly nanoparticle albumin bound nab-paclitaxel (NP) or ixabepilone (Ix) with or without bevacizumab (B) as first-line therapy for locally recurrent or metastatic breast cancer (MBC). J Clin Oncol 30(Suppl; abstr CRA1002)Google Scholar
  35. 35.
    Burger RA (2011) Overview of anti-angiogenic agents in development for ovarian cancer. Gynecol Oncol 121(1):230–238 doi:S0090–8258(10)00863–2 [pii] 10.1016/j.ygyno.2010.11.035PubMedCrossRefGoogle Scholar
  36. 36.
    Brown MR, Blanchette JO, Kohn EC (2000) Angiogenesis in ovarian cancer. Baillieres Best Pract Res Clin Obstet Gynaecol 14(6):901–918 doi:10.1053/beog.2000.0134 beog.2000.0134 [pii]PubMedCrossRefGoogle Scholar
  37. 37.
    Chen H, Ye D, Xie X et al (2004) VEGF, VEGFRs expressions and activated STATs in ovarian epithelial carcinoma. Gynecol Oncol 94(3):630–635 doi:10.1016/j.ygyno.2004.05.056 S0090825804003488 [pii]PubMedCrossRefGoogle Scholar
  38. 38.
    Ramakrishnan S, Subramanian IV, Yokoyama Y, Geller M (2005) Angiogenesis in normal and neoplastic ovaries. Angiogenesis 8(2):169–182 doi:10.1007/s10456-005-9001-1PubMedCrossRefGoogle Scholar
  39. 39.
    Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477 doi:nrclinonc.2009.94 [pii] 10.1038/nrclinonc.2009.94 [doi]PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • I. Alkatout
    • 1
  • N. Maass
    • 2
  • W. Jonat
    • 1
  • C. Mundhenke
    • 1
  • C. Schem
    • 1
  1. 1.Department of Gynecology and ObstetricsUniversity Medical Center Schleswig-Holstein, Campus KielKielDeutschland
  2. 2.Frauenklinik für Gynäkologie und GeburtsmedizinUniversitätsklinikum AachenAachenDeutschland

Personalised recommendations