Der Gynäkologe

, Volume 42, Issue 9, pp 665–670

Das hereditäre Mammakarzinom

Leitthema

Zusammenfassung

Gehäuftes Auftreten von Mamma- und Ovarialkarzinom in einer Familie gibt den ersten Hinweis für hereditär bedingte Tumoren. Angehörige betroffener Familien sollten spezialisierten Zentren zur interdisziplinären Beratung zugeführt werden. Bei Nachweis einer Mutation im BRCA1- oder BRCA2-Gen besteht ein bis zu 80%iges Lebenszeitrisiko, an einem Mammakarzinom zu erkranken. Die Kenntnis eines hereditären Zusammenhangs zwischen eigenen oder familiären Erkrankungsfällen hat Einfluss auf Vorsorge, Therapie und Nachsorge. Die nicht erkrankte Ratsuchende kann an einem intensivierten Früherkennungsprogramm teilnehmen und Präventionsstrategien überdenken. Bereits erkrankte Familienmitglieder können gezielt beraten und behandelt werden. Als neue spezifische Therapieansätze sind PARP(Poly-ADP-Ribose-Polymerase)-1-Inhibitoren und Platinderivate bereits in klinischer Prüfung. Die deutschlandweite Zusammenführung der Daten aller getesteten Familien durch das Konsortium für hereditäres Mamma- und Ovarialkarzinom ermöglicht klinische Forschung und die Teilnahme an der weltweiten Suche nach weiteren Risikogenen.

Schlüsselwörter

BRCA1-Gen BRCA2-Gen Hereditäres Mammakarzinom Gentest Intensiviertes Früherkennungsprogramm 

Hereditary breast cancer

Abstract

About 10% of all breast cancer cases are of genetic origin. A positive family history for breast and/or ovarian cancer can strongly hint at a hereditary background. Mutation in BRCA1 or BRCA2 raises the relative lifetime risk of breast cancer to 80%. Furthermore, there is a significant risk of other mutation-associated cancers; the ovarian cancer lifetime risk is up to 45%. Knowledge of a hereditary cause for breast cancer in a patient’s own or family history influences early cancer detection, prevention strategies, therapy, and aftercare. New therapy options such as the PARP-1 inhibitor, the first specific and molecular target, and the use of platinum-based drug regimens to individualize treatment of BRCA-associated cancer are now being tested in clinical trials. The data for all families that have undergone genetic counseling are being collected by the German Consortium for Hereditary Breast and Ovarian Cancer to enable participation in clinical research and in the worldwide search for new high-risk genes

Keywords

BRCA1-gene BRCA2-gene Hereditary breast cancer Genetic testing Early cancer detection 

Literatur

  1. 1.
    Antoniou AC, Easton DF (2003) Polygenic inheritance of breast cancer: Implications for design of association studies. Genet Epidemiol 25(3):190–202PubMedCrossRefGoogle Scholar
  2. 2.
    Antoniou AC, Pharoah PD, Narod S et al (2005) Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: a combined analysis of 22 population based studies. J Med Genet 42(7):602–603PubMedCrossRefGoogle Scholar
  3. 3.
    Byrski T, Gornwald J, Huzarski T et al (2008) The polish hereditary breast cancer consortium response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat 108:289–296PubMedCrossRefGoogle Scholar
  4. 4.
    Cuzick J (2008) Chemoprevention of breast cancer. Breast Cancer 15(1):10–16PubMedCrossRefGoogle Scholar
  5. 5.
    Fong PC, Boss DS, Carden CP et al (2008) AZD2281 (KU-0059436), a PARP (poly-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: Results from a phase I study. J Clin Oncol, ASCO 2008 Annual Meeting Proceedings (Post-Meeting Edition) 26:5510Google Scholar
  6. 6.
    Hartmann LC, Sellers TA, Schaid DJ et al (2001) Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst 7; 93(21):1633–1637Google Scholar
  7. 7.
    Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 15; 58(6):1120–1123Google Scholar
  8. 8.
    King MC, Marks JH, Mandell JB, New York Breast Cancer Study Group (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 4; 302(5645):643–646Google Scholar
  9. 9.
    King MC, Wieand S, Hale K et al (2001) Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA 286(18):2251–2256PubMedCrossRefGoogle Scholar
  10. 10.
    Lafarge S, Sylvain V, Ferrara M, Bignon YJ (2201) Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 20(45):6597–6606CrossRefGoogle Scholar
  11. 11.
    Lakhani SR, Reis-Filho JS, Fulford L et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 15; 11(14):5175–5180Google Scholar
  12. 12.
    Lostumbo L, Carbine N, Wallace J, Ezzo J (2004) Prophylactic mastectomy for the prevention of breast cancer. Cochrane Database Syst Rev 18(4)Google Scholar
  13. 13.
    Meijers-Heijboer H, van Geel B, van Putten WL et al (2001) Breast caner after prophylactic mastectomy in women with a personal and family history of breast cancer BRCA1 and BRCA2 mutation. N Eng J Med 345:159–164CrossRefGoogle Scholar
  14. 14.
    Metcalfe K, Lynch HT, Ghadirian P et al (2004) Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 15; 22(12):2328–2335Google Scholar
  15. 15.
    Metcalfe KA, Lynch HT, Ghadirian P et al (2005) The risk of ovarian cancer after breast cancer in BRCA1 and BRCA2 carriers. Gynecol Oncol 96(1):222–226PubMedCrossRefGoogle Scholar
  16. 16.
    Metcalfe KA (2009) Oophorectomy for breast cancer prevention in women with BRCA1 or BRCA2 mutations. Womens Health (Lond Engl) 5(1):63–68. ReviewGoogle Scholar
  17. 17.
    Pierce LJ, Levin AM, Rebbeck TR et al (2006) Ten-year multi-institutional results of breast-conserving surgery and radiotherapy in BRCA1/2-associated stage I/II breast cancer. J Clin Oncol 1; 24(16):2437–2443Google Scholar
  18. 18.
    Quinn JE, Kennedy RD, Mullan PB et al (2003) BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 1;63(19):6221–6228Google Scholar
  19. 19.
    Rebbeck TR, Friebel T, Lynch HT et al (2004) Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 15; 22(6):1055–1062Google Scholar
  20. 20.
    Robson M, Svahn T, McCormick B et al (2005) Appropriateness of breast-conserving treatment of breast carcinoma in women with germline mutations in BRCA1 or BRCA2: a clinic-based series. Cancer 1; 103(1):44–51Google Scholar
  21. 21.
    Satagopan JM, Offit K, Foulkes W et al (2001) The lifetime risks of breast cancer in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. Cancer Epidemiol Biomarkers 10(5):467–473Google Scholar
  22. 22.
    Tassone P, Tagliaferri P, Perricelli A et al (2003) BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 22; 88(8):1285–1291Google Scholar
  23. 23.
    van Sprundel TC, Schmidt MK, Rookus MA et al (2005) Risk reduction of contralateral breast cancer and survial after contralateral prophylactic mastectomy in BRCA1 or BRCA2 mutation carriers. Br J Cancer 8; 93(3):287–292Google Scholar
  24. 24.
    Yun J, Zhong Q, Kwak JY, Lee WH (2005) Hypersensitivity of Brca1-deficient MEF to the DNA interstrand crosslinking agent mitomycin C is associated with defect in homologous recombination repair and aberrant S-phase arrest. Oncogene 9; 24(25):4009–4016Google Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Universitätsfrauenklinik Schleswig-Holstein, Campus KielKielDeutschland

Personalised recommendations