Der Gynäkologe

, 41:523

Therapieoptionen bei karzinomerkrankten Frauen mit Kinderwunsch

Leitthema

Zusammenfassung

Mit zunehmend erfolgreicheren onkologischen Therapien nimmt auch das Langzeitüberleben betroffener Patientinnen zu. Dies erfordert, die durch die Behandlung verursachten Langzeitkomplikationen verstärkt zu berücksichtigen. Hierzu zählt auch der Verlust der Ovarialfunktion beziehungsweise der Fertilität infolge zytostatikainduzierter Gonadotoxizität. Heute können mehrere, teilweise jedoch noch als experimentell einzustufende Möglichkeiten des Fertilitätserhalts Anwendung finden. Die Zahl der Therapieoptionen zum Fertilitätserhalt hat gerade in jüngster Zeit zugenommen. Vor einer isolierten Strahlentherapie können die Ovarien beispielsweise aus dem Bestrahlungsfeld transpositioniert werden. Oozyten, fertilisierte Eizellen und Embryonen sowie Ovarialgewebe können heute kryokonserviert werden. Auch GnRH-Analoga schützen möglicherweise die weiblichen Gonaden. Einige der verfügbaren Optionen, wie die Kryokonservierung von Embryonen, sind in Deutschland rechtlich nicht zulässig. Ungeklärt ist neben zahlreichen technischen Details auch die Kostenerstattung. Dennoch hat die Perspektive einer Erfüllung des Kinderwunsches trotz tumorspezifischer Therapie große Bedeutung erlangt. Dies wird auch in der Gründung eines bundesweiten Netzwerkes „FertiPROTEKT“ deutlich, das überregional Methoden des Fertilitätserhalts anbietet.

Schlüsselwörter

Ovar Fertilität Chemotherapie Strahlentherapie FertiPROTEKT 

Therapy options for cancer patients wishing to become pregnant

Abstract

As oncologic treatment grows more successful, the longevity of affected patients also increases. This in turn demands increased attention to long-term complications resulting from that treatment, including loss of ovary function and fertility resulting from cytostatically-induced gonadotoxicity. Many new options for retaining fertility are available, some of them still best classified as experimental; their number has especially increased of late. One example is transposition of the ovaries out of the radiation field before isolated radiotherapy. Oocytes, fertilized ova, embryos, and ovarial tissue can now be conserved cryogenically. Also, GnRH analogs can protect the gonads. Some of the options, including cryoconservation of embryos, are not legal in Germany. Many technical questions still require clarification, as do details of reimbursement. Nonetheless the ability to become pregnant despite tumor-specific therapy has come to assume great importance. This is reflected by the new German network called FertiPROTEKT which makes available on a national basis methods for preserving fertility.

Keywords

Ovarial Fertility Chemotherapy FertiPROTEKT 

Literatur

  1. 1.
    Robert-Koch-Institut (2004) Arbeitsgemeinschaft bevölkerungsbezogener Krebsregister in Deutschland 2004, 4. Aufl, BerlinGoogle Scholar
  2. 2.
    Leung W, Hudson MM, Strickland DK et al. (2000) Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 18: 3273–3279PubMedGoogle Scholar
  3. 3.
    Shusterman S, Meadows AT (2000) Long term survivors of childhood leukemia. Curr Opin Hematol 7: 217–222PubMedCrossRefGoogle Scholar
  4. 4.
    Sonmezer M, Oktay K (2004) Fertility preservation in female patients. Human Reproduction Update 10: 251–266PubMedCrossRefGoogle Scholar
  5. 5.
    Oktay K, Kan MT, Rosenwaks Z (2001) Recent progress in oocyte and ovarian tissue cryopreservation and transplantation. Curr Opin Obstet Gynecol 13: 263–268PubMedCrossRefGoogle Scholar
  6. 6.
    Familiari G, Caggiati A, Nottola SA et al. (1993) Ultrastructure of human ovarian primordial follicles after combination chemotherapy for Hodgkin’s disease. Hum Reprod 8: 2080–2087PubMedGoogle Scholar
  7. 7.
    Byrne J, Fears TR, Gail MH et al: (1992) Early menopause in long-term survivors of cancer during adolescence. Am J Obstet Gynecol 166: 788–793PubMedGoogle Scholar
  8. 8.
    Meirow D, Lewis H, Nugent D, Epstein M (1999) Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum Reprod 14: 1903–1907PubMedCrossRefGoogle Scholar
  9. 9.
    Rivkees SA, Crawford JD (1988) The relationship of gonadal activity and chemotherapy-induced gonadal damage. J Am Med Assoc 259: 2123–2125CrossRefGoogle Scholar
  10. 10.
    Larsen EC, Muller J, Schmiegelow K et al. (2003) Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab 88: 5307–5314PubMedCrossRefGoogle Scholar
  11. 11.
    Gosden RG, Wade JC, Fraser HM et al. (1997) Impact of congenital or experimental hypogonadotrophism on the radiation sensitivity of the mouse ovary. Hum Reprod 12: 2483–2488PubMedCrossRefGoogle Scholar
  12. 12.
    Howell S, Shalet S (1998) Gonadal damage from chemotherapy and radiotherapy. Endocrinol Metab Clin North Am 27: 927–943PubMedCrossRefGoogle Scholar
  13. 13.
    Wallace WH, Thomson AB, Kelsey TW (2003) The radiosensitivity of the human oocyte. Hum Reprod 18: 117–121PubMedCrossRefGoogle Scholar
  14. 14.
    Meirow D, Nugent D (2001) The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update 7: 535–543PubMedCrossRefGoogle Scholar
  15. 15.
    Jemal A, Murray T, Samuels A et al. (2003) Cancer statistics, 2003. CA Cancer J Clin 53: 5–26PubMedCrossRefGoogle Scholar
  16. 16.
    Weir HK, Thun MJ, Hankey BF et al. (2003) Annual report to the nation on the status of cancer, 1975–2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst 95: 1276–1299PubMedGoogle Scholar
  17. 17.
    Oktay K, Buyuk E, Rosenwaks Z (2003) Novel use of an aromatase inhibitor for fertility preservation via embryo cryopreservation in endometrial cancer: a case report. Fertil Steril (Suppl 3) 80: 144CrossRefGoogle Scholar
  18. 18.
    Hann LE, Lui DM, Shi W et al. (2000) Adnexal masses in women with breast cancer: US findings with clinical and histopathologic correlation. Radiology 216: 242–247PubMedGoogle Scholar
  19. 19.
    Nakanishi T, Wakai K, Ishikawa H et al. (2001) A comparison of ovarian metastasis between squamous cell carcinoma and adenocarcinoma of the uterine cervix. Gynecol Oncol 82: 504–509PubMedCrossRefGoogle Scholar
  20. 20.
    Morice P, Thiam-Ba R, Castaigne D et al. (1998) Fertility results after ovarian transposition for pelvic malignancies treated by external irradiation or brachytherapy. Hum Reprod 13: 660–663PubMedCrossRefGoogle Scholar
  21. 21.
    Morice P, Juncker L, Rey A et al. (2000) Ovarian transposition for patients with cervical carcinoma treated by radiosurgical combination. Fertil Steril 74: 743–748PubMedCrossRefGoogle Scholar
  22. 22.
    Dargent D, Mathevet P (1995) Schauta’s vaginal hysterectomy combined with laparoscopic lymphadenectomy. Baillieres Clin Obstet Gynaecol 9: 691–705PubMedCrossRefGoogle Scholar
  23. 23.
    Bernardini M, Barrett J, Seaward G, Covens A (2003) Pregnancy outcomes in patients after radical trachelectomy. Am J Obstet Gynecol 189: 1378–1382PubMedCrossRefGoogle Scholar
  24. 24.
    Claus EB, Schildkraut JM, Thompson WD, Risch NJ (1996) The genetic attributable risk of breast and ovarian cancer. Cancer 77: 2318–2324PubMedCrossRefGoogle Scholar
  25. 25.
    Gladstone DE, Prestrud AA, Pradhan A et al. (2002) High-dose cyclophosphamide for severe systemic lupus erythematosus. Lupus 11: 405–410PubMedCrossRefGoogle Scholar
  26. 26.
    Ray GR, Trueblood HW, Enright LP et al. (1970) Oophoropexy: a means of preserving ovarian function following pelvic megavoltage radiotherapy for Hodgkin’s disease. Radiology 96: 175–180PubMedGoogle Scholar
  27. 27.
    Morice P, Thiam-Ba R, Castaigne D et al. (1998) Fertility results after ovarian transposition for pelvic malignancies treated by external irradiation or brachytherapy. Hum Reprod 13: 660–663PubMedCrossRefGoogle Scholar
  28. 28.
    LeFloch O, Donaldson SS, Kaplan HS (1976) Pregnancy following oophoropexy and total nodal irradiation in women with Hodgkin’s disease. Cancer 38: 2263–2268CrossRefGoogle Scholar
  29. 29.
    Wolff M von, Esenhard S, Strowitzki T (2005) Ovarielle Protektion und Erhalt der Fertilität im Rahmen der Therapie gynäkologischer Malignome bei Kinderwunsch. Gynäkol Endokr 3: 107–114CrossRefGoogle Scholar
  30. 30.
    Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 1(8486): 884–886PubMedCrossRefGoogle Scholar
  31. 31.
    Kazem R, Thompson LA, Srikantharajah A et al. (1995) Cryopreservation of human oocytes and fertilization by two techniques: in-vitro fertilization and intracytoplasmic sperm injection. Hum Reprod 10: 2650–2654PubMedGoogle Scholar
  32. 32.
    Park SE, Son WY, Lee SH et al. (1997) Chromosome and spindle configurations of human oocytes matured in vitro after cryopreservation at the germinal vesicle stage. Fertil Steril 68: 920–926PubMedCrossRefGoogle Scholar
  33. 33.
    Wu J, Zhang L, Wang X (2001) In vitro maturation, fertilization and embryo development after ultrarapid freezing of immature human oocytes. Reproduction 121: 389–393PubMedCrossRefGoogle Scholar
  34. 34.
    Otte S von, Schöpper B, Al Hasani S, Diedrich K (2004) In-vitro-Maturation: Eine Perspektive der assistierten Reproduktion. Gynäkologe 37: 701–709CrossRefGoogle Scholar
  35. 35.
    Oktay K, Buyuk E, Davis O et al. (2003) Fertility preservation in breast cancer patients: IVF and embryo cryopreservation after ovarian stimulation with tamoxifen. Hum Reprod 18: 90–95PubMedCrossRefGoogle Scholar
  36. 36.
    Mitwally MF, Casper RF (2002) Aromatase inhibition improves ovarian response to follicle-stimulating hormone in poor responders. Fertil Steril 77: 776–780PubMedCrossRefGoogle Scholar
  37. 37.
    Oktay K (2001) Ovarian tissue cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum Reprod Update 7: 526–534PubMedCrossRefGoogle Scholar
  38. 38.
    Liu J, Van der Elst J, Van den Broecke R, Dhont M (2001) Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol Reprod 64: 171–178PubMedCrossRefGoogle Scholar
  39. 39.
    Radford JA, Lieberman BA, Brison DR et al. (2001) Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet 357: 1172–1175PubMedCrossRefGoogle Scholar
  40. 40.
    Donnez J, Dolmans MM, Demylle D et al. (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364 (9443): 1405–1410PubMedCrossRefGoogle Scholar
  41. 41.
    Oktay K, Buyuk E, Veeck L et al. (2004) Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet 363: 837–840PubMedCrossRefGoogle Scholar
  42. 42.
    Oktay KH, Yih M (2002) Preliminary experience with orthotopic and heterotopic transplantation of ovarian cortical strips. Semin Reprod Med 20: 63–74PubMedCrossRefGoogle Scholar
  43. 43.
    Oktay K., Newton H, Mullan J, Gosden RG (1998) Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum Reprod 13: 1133–1138PubMedCrossRefGoogle Scholar
  44. 44.
    Blumenfeld Z, Dann E, Avivi I et al. (2002) Fertility after treatment for Hodgkin’s disease. Ann Oncol (Suppl 1) 13: 138–147Google Scholar
  45. 45.
    Nawroth F, Kupka MS et al. (2004) Möglichkeiten der Kryokonservierung zur Erhaltung der weiblichen Fertilität. Dtsch Ärzteblatt 101, Ausgabe 5 vom 30.01.2004, Seite A-268 / B-228 / C-219Google Scholar
  46. 46.
    Silber SJ, Lenahan KM, Levine DJ et al. (2005) Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med 353: 58–63PubMedCrossRefGoogle Scholar
  47. 47.
    Meirow D, Levron J, Eldar-Geva T et al. (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353: 318–321PubMedCrossRefGoogle Scholar
  48. 48.
    Siegel-Itzkovich J (2005) Woman gives birth after receiving transplant of her own ovarian tissue. BMJ 331 (7508): 70PubMedCrossRefGoogle Scholar
  49. 49.
    Ataya K, Rao LV, Lawrence E, Kimmel R (1995) Luteinizing hormonereleasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod 52: 365–372PubMedCrossRefGoogle Scholar
  50. 50.
    Ataya K, Pydyn E, Ramahi-Ataya A, Orton CG (1995) Is radiation induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists? Preliminary observations. J Clin Endocrinol Metab 8: 790–795CrossRefGoogle Scholar
  51. 51.
    Blumenfeld Z, Avivi I, Linn S, Epelbaum R et al. (1996) Prevention of irreversible chemotherapy-induced ovarian damage in young women with lymphoma by a gonadotrophin-releasing hormone agonist in parallel to chemotherapy. Hum Reprod 11: 1620–1626PubMedGoogle Scholar
  52. 52.
    Blumenfeld Z (2001) Ovarian rescue/protection from chemotherapeutic agents. J Soc Gynecol Invest (Suppl 1) 8: S60–S64CrossRefGoogle Scholar
  53. 53.
    Meirow D, Lewis H, Nugent D, Epstein M (1999) Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum Reprod 14: 1903–1907PubMedCrossRefGoogle Scholar
  54. 54.
    Waxman JH, Ahmed R, Smith D et al. (1987) Failure to preserve fertility in patients with Hodgkin’s disease. Cancer Chemother Pharmacol 19: 159–162PubMedCrossRefGoogle Scholar
  55. 55.
    Cheng CK, Yeung CM, Chow BK, Leung PC (2002) Characterization of a new upstream GnRH receptor promoter in human ovarian granulosaluteal cells. Mol Endocrinol 16: 1552–1564PubMedCrossRefGoogle Scholar
  56. 56.
    Gerber B, Friedrich M, Maass N et al. (2005) Ovarprotektion mit GnRH-Analoga: Bereits ein Standard? Fauenrazt 10: 880–885Google Scholar
  57. 57.
    Cortvrindt R, Smitz J (2001) In vitro follicle growth: achievements in mammalian species. Reprod Domest Anim 36: 3–9PubMedCrossRefGoogle Scholar
  58. 58.
    Oktay K, Nugent D, Newton H et al. (1997) Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil Steril 67: 481–486PubMedCrossRefGoogle Scholar
  59. 59.
    Morita Y, Perez GI, Paris F et al. (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6: 1109–1114PubMedCrossRefGoogle Scholar
  60. 60.
    Paris F, Perez GI, Fuks Z et al. (2002) Sphingosine 1-phosphate preserves fertility in irradiated female mice without propagating genomic damage in offspring. Nat Med 8: 901–902PubMedCrossRefGoogle Scholar
  61. 61.
    Jeremias E, Bedaiwy MA, Gurunluoglu R et al. (2002) Heterotopic autotransplantation of the ovary with microvascular anastomosis: a novel surgical technique. Fertil Steril 77: 1278–12820PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Klinik für Frauenheilkunde und Geburtshilfe, Bereich für Reproduktionsmedizin und gynäkologische EndokrinologieUniversität Schleswig-Holstein, Campus LübeckLübeckDeutschland

Personalised recommendations