Der Gynäkologe

, Volume 40, Issue 8, pp 592–598

Grundlagen der zentralen Körpergewichtsregulation

Leitthema
  • 87 Downloads

Zusammenfassung

Das Gehirn reguliert das Energiegleichgewicht des Körpers, indem es Signale aus der Körperperipherie integriert und verarbeitet. Damit gelingt es dem gesunden Organismus, das Körpergewicht durch die verschiedenen Lebensphasen konstant zu halten. Periphere Signale werden von Pankreas, Fettgewebe und dem Verdauungstrakt ausgesandt und beeinflussen durch ihre Wirkung im Gehirn die Nahrungsaufnahme bzw. Energieabgabe des Organismus. In den letzten Jahren wuchsen die Erkenntnisse über den Einfluss zentraler Netzwerke auf den Energiehaushalt rapide. Zahlreiche Peptide konnten charakterisiert werden, deren Funktion die Übermittlung des Energiestatus an das Gehirn zu sein scheint. Ebenso wurden Fortschritte bei der Identifizierung der an dieser Übermittlung beteiligten Hirnregionen, Neuronenpopulationen sowie der Neurotransmitter gemacht, die an der Signalverarbeitung mitwirken. Ein besseres Verständnis dieser Regelkreise ist nötig, um die Pathogenese der in Ausmaß und Häufigkeit zunehmenden Fettleibigkeit besser zu verstehen und neue effiziente pharmakologische Therapiekonzepte der Adipositas und metabolischer Erkrankungen zu entwickeln.

Schlüsselwörter

Übergewicht Energie-Homöostase Nahrungsaufnahme Hypothalamus 

Basic facts of central body weight regulation

Abstract

The brain regulates the body’s energy balance in response to peripheral signals, which it integrates and processes. In this way it is possible for the healthy organism to maintain a constant body weight throughout the different phases of life. Peripheral signals from pancreas, adipose tissue and intestinal tract are released into the bloodstream and modulate food intake and energy expenditure by their effects on central circuits. Recent years have seen rapid increases in our knowledge of the influence of central pathways on energy balance. Numerous peptides have been identified whose function seems to be that of reporting the body’s nutritional status to the brain. There has also been a great deal of progress in identification of the brain regions, neuronal populations and neurotransmitters that are involved in processing these signals. A fuller understanding of these regulatory circuits is needed to enable us to understand the pathogenesis of obesity that is increasing in degree and frequency in our society and to develop new drug therapies that are effective against obesity and metabolic diseases.

Keywords

Obesity Energy homeostasis Food intake Hypothalamus 

Literatur

  1. 1.
    Bruning JC et al. (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125PubMedCrossRefGoogle Scholar
  2. 2.
    Campfield LA et al. (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546–549PubMedCrossRefGoogle Scholar
  3. 3.
    Halaas JL et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 543–546PubMedCrossRefGoogle Scholar
  4. 4.
    Farooqi IS et al. (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341: 879–884PubMedCrossRefGoogle Scholar
  5. 5.
    Elmquist JK et al. (1997) Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 138: 839–842PubMedCrossRefGoogle Scholar
  6. 6.
    Rahmouni K et al. (2002) Selective resistance to central neural administration of leptin in agouti obese mice. Hypertension 39(2 Pt 2): 486–490PubMedCrossRefGoogle Scholar
  7. 7.
    McMinn JE et al. (2004) An allelic series for the leptin receptor gene generated by CRE and FLP recombinase. Mamm Genome 15: 677–685PubMedCrossRefGoogle Scholar
  8. 8.
    Elias CF et al. (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23: 775–786PubMedCrossRefGoogle Scholar
  9. 9.
    Maffei M et al. (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1: 1155–1161PubMedCrossRefGoogle Scholar
  10. 10.
    Fogteloo AJ et al. (2003) Effects of recombinant human leptin treatment as an adjunct of moderate energy restriction on body weight, resting energy expenditure and energy intake in obese humans. Diabetes Nutr Metab 16: 109–114PubMedGoogle Scholar
  11. 11.
    Heymsfield SB et al. (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. Jama 282: 1568–1575PubMedCrossRefGoogle Scholar
  12. 12.
    Van Heek M et al. (1997) Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest 99: 385–390CrossRefGoogle Scholar
  13. 13.
    El-Haschimi K et al. (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 105: 1827–1832PubMedGoogle Scholar
  14. 14.
    Morley JE, Flood JF (1987) An investigation of tolerance to the actions of leptogenic and anorexigenic drugs in mice. Life Sci 41: 2157–2165PubMedCrossRefGoogle Scholar
  15. 15.
    Batterham RL et al. (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418: 650–654PubMedCrossRefGoogle Scholar
  16. 16.
    Imamura M et al. (1998) Elevation of plasma peptide YY and pancreatic juice hypersecretion following massive small bowel resection in the rat. Tohoku J Exp Med 184: 49–59PubMedCrossRefGoogle Scholar
  17. 17.
    Strader AD, Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128: 175–191PubMedCrossRefGoogle Scholar
  18. 18.
    Wren AM et al. (20009 The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141: 4325–4328CrossRefGoogle Scholar
  19. 19.
    Wren AM et al. (2001) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50: 2540–2547PubMedCrossRefGoogle Scholar
  20. 20.
    Masuda Y et al. (2000) Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun 276: 905–908PubMedCrossRefGoogle Scholar
  21. 21.
    Shintani M et al. (2001) Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 50: 227–232PubMedCrossRefGoogle Scholar
  22. 22.
    Cummings DE et al. (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346: 1623–1630PubMedCrossRefGoogle Scholar
  23. 23.
    Cummings DE et al. (2002) Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 8: 643–644PubMedCrossRefGoogle Scholar
  24. 24.
    Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 143: 315–317Google Scholar
  25. 25.
    Di Marzo V et al. (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410: 822–825CrossRefGoogle Scholar
  26. 26.
    Tucci SA et al. (2004) The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br J Pharmacol 143: 520–523PubMedCrossRefGoogle Scholar
  27. 27.
    Sclafani A, Ackroff K, Schwartz GJ (2003) Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol Behav 78: 285–294PubMedCrossRefGoogle Scholar
  28. 28.
    Broberger C et al. (1999) Cocaine- and amphetamine-regulated transcript in the rat vagus nerve: A putative mediator of cholecystokinin-induced satiety. Proc Natl Acad Sci U S A 96: 13506–13511PubMedCrossRefGoogle Scholar
  29. 29.
    Aja S et al. (2001) Intracerebroventricular CART peptide reduces food intake and alters motor behavior at a hindbrain site. Am J Physiol Regul Integr Comp Physiol 281: R1862–1867PubMedGoogle Scholar
  30. 30.
    Farrigan C, Pang K (2002) Obesity market overview. Nat Rev Drug Discov 1: 257–258PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Institut für Genetik und Zentrum für Molekulare Medizin Köln (ZMMK), Abteilung für Mausgenetik und MetabolismusUniversität zu KölnKölnDeutschland
  2. 2.Klinik II und Poliklinik für Innere MedizinKlinikum der Universität zu KölnKölnDeutschland

Personalised recommendations