Der Gynäkologe

, Volume 40, Issue 6, pp 431–439

Isolierte Tumorzellen in Knochenmark und Blut von Patientinnen mit primärem Mammakarzinom – Klinische Relevanz

  • W. Janni
  • T. Fehm
  • B. Rack
  • V. Müller
  • E. Solomayer
  • K. Pantel
  • H. Sommer
  • C. Schindlbeck
  • J. Jückstock
  • K. Friese
Leitthema

Zusammenfassung

Trotz wesentlicher Fortschritte in der systemischen Therapie des Mammkarzinoms sind Rezidive nach oft langer Latenzzeit charakteristisch. Ausgangspunkt für eine Fernmetastasierung sind in der Regel isolierte Tumorzellen, die bereits früh im Verlauf der Erkrankung hämatogen disseminieren. Der Nachweis dieser minimalen Tumorresiduen („minimal residual disease“, MRD) ist mit konventionellen bildgebenden Verfahren nicht möglich; die dafür am besten etablierte Methode ist der immunzytochemische Nachweis isolierter Tumorzellen im Knochenmark (KM). Die daraus gewonnenen Informationen über Prävalenz und Phänotyp der Tumorzellen lassen Rückschlüsse auf Tumorbiologie und individuelle Prognose zu und könnten in der adjuvanten Situation eine Therapieoptimierung ermöglichen. Die immunzytochemische KM-Untersuchung könnte die Antwort auf die Frage nach dem individuellen Erfolg adjuvanter Therapien erleichtern und Grundlage für die Einleitung einer sekundär-adjuvanten Therapie sein. Außerhalb klinischer Studien sollte der Nachweis isolierter Tumorzellen derzeit nicht als alleinige Grundlage für eine Therapieentscheidung herangezogen werden.

Schlüsselwörter

Mammakarzinom Disseminierte Tumorzellen Isolierte Tumorzellen Mikrometastasen Minimale Tumorresiduen Knochenmark 

The clinical relevance of the demonstration of isolated cancer cells in bone marrow and blood from patients with primary breast cancer

Abstract

Data is emerging on the prognostic relevance of occult metastatic cells in the bone marrow of patients with various solid tumors. There is increasing evidence that validated anti-cytokeratin antibodies represent the present standard for the detection of isolated tumor cells. This immunocytochemical assay allows the identification of patients with occult tumor cell dissemination that cannot be identified by conventional screening methods in tumor staging. According to recent studies, these patients are at higher risk for the subsequent development of distant metastases and might therefore benefit from early systemic therapy. Therapeutic monitoring and cell cycle independent antibody-based therapy are among the possible implications of this new, promising diagnostic tool. The present review also focuses on the state of the art in reliable detection methods of occult metastatic cells in the bone marrow of breast cancer patients and on the prognostic relevance of these cells at different stages of the disease.

Keywords

Breast cancer Disseminated tumor cells Isolated tumor cells Micrometastases Minimal tumor residues Bone marrow 

Literatur

  1. 1.
    DeVita VTJ (1989) Breast cancer therapy: exercising all our options. N Eng J Med 320: 527–529CrossRefGoogle Scholar
  2. 2.
    Rosner D, Lane WW (1993) Predicting recurrence in axillary-node negative breast cancer patients. Breast Cancer Res Treat 25: 127–139PubMedCrossRefGoogle Scholar
  3. 3.
    Braun S, Pantel K, Muller P et al. (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342: 525–533PubMedCrossRefGoogle Scholar
  4. 4.
    Cote RJ, Rosen PP, Lesser ML et al. (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9: 1749–1756PubMedGoogle Scholar
  5. 5.
    Diel IJ, Kaufmann M, Costa SD et al. (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88: 1652–1658PubMedCrossRefGoogle Scholar
  6. 6.
    Gebauer G, Fehm T, Merkle E et al. (2001) Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol 19: 3669–3674PubMedGoogle Scholar
  7. 7.
    Gerber B, Krause A, Muller H et al. (2001) Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 19: 960–971PubMedGoogle Scholar
  8. 8.
    Harbeck N, Untch M, Pache L, Eiermann W (1994) Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer 69: 566–571PubMedGoogle Scholar
  9. 9.
    Landys K, Persson S, Kovarik J et al. (1998) Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: Results of a 20-year median follow-up. Breast Cancer Res Treat 49: 27–33PubMedCrossRefGoogle Scholar
  10. 10.
    Mansi JL, Gogas H, Bliss JM et al. (1999) Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 354: 197–202PubMedCrossRefGoogle Scholar
  11. 11.
    Harbeck N, Kates RE, Gauger K et al. (2004) Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 91: 450–456PubMedGoogle Scholar
  12. 12.
    Hayes DF, Bast RC, Desch CE et al. (1996) Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 88: 1456–1466PubMedCrossRefGoogle Scholar
  13. 13.
    Beiske K, Myklebust AT, Aamdal S et al. (1992) Detection of bone marrow metastases in small cell lung cancer patients. Comparison of immunologic and morphologic methods. Am J Pathol 141: 531–538PubMedGoogle Scholar
  14. 14.
    Ellis G, Ferguson M, Yamanaka E et al. (1989) Monoclonal antibodies for detection of occult carcinoma cells in bone marrow of breast cancer patients. Cancer 63: 2509–2514PubMedCrossRefGoogle Scholar
  15. 15.
    Funke I, Fries S, Rolle M et al. (1996) Comparative analyses of bone marrow micrometastases in breast and gastric cancer. Int J Cancer 65: 755–761PubMedCrossRefGoogle Scholar
  16. 16.
    Braun S, Pantel K (1999) Micrometastatic bone marrow involvement: detection and prognostic significance. Med Oncol 16: 154–165PubMedCrossRefGoogle Scholar
  17. 17.
    Braun S, Pantel K (1996) Biological characteristics of micrometastatic carcinoma cells in bone marrow. Curr Top Microbiol Immunol 213: 163–177PubMedGoogle Scholar
  18. 18.
    Braun S, Pantel K (1998) Prognostic significance of micrometastatic bone marrow involvement. Breast Cancer Res Treat 52: 201–216PubMedCrossRefGoogle Scholar
  19. 19.
    Braun S, Muller M, Hepp F et al. (1998) Re: Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 90: 1099–1101PubMedCrossRefGoogle Scholar
  20. 20.
    Braun S, Hepp F, Kentenich CR et al. (1999) Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res 5: 3999–4004PubMedGoogle Scholar
  21. 21.
    Braun S, Kentenich C, Janni W et al. (2000) Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 18: 80–86PubMedGoogle Scholar
  22. 22.
    Cote RJ, Beattie EJ, Chaiwun B et al. (1995) Detection of occult bone marrow micrometastases in patients with operable lung carcinoma. Ann Surg 222: 415–423PubMedCrossRefGoogle Scholar
  23. 23.
    Dearnaley DP, Sloane JP, Ormerod MG et al. (1981) Increased detection of mammary carcinoma cells in marrow smears using antisera to epithelial membrane antigen. Br J Cancer 44: 85–90PubMedGoogle Scholar
  24. 24.
    Janni W, Gastroph S, Hepp F et al. (2000) Incidence and prognostic significance of an increased number of tumor cells in bone marrow of patients with first recurrence of breast cancer. Cancer 88: 2252–2259PubMedCrossRefGoogle Scholar
  25. 25.
    Mansi JL, Easton D, Berger U et al. (1991) Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years‘ follow-up. Eur J Cancer 27: 1552–1555PubMedGoogle Scholar
  26. 26.
    Myklebust AT, Pharo A, Fodstad O (1993) Effective removal of SCLC cells from human bone marrow. Use of four monoclonal antibodies and immunomagnetic beads. Br J Cancer 67: 1331–1336PubMedGoogle Scholar
  27. 27.
    Osborne MP, Rosen PP (1994) Detection and management of bone marrow micrometastases in breast cancer. Oncology Huntingt 8: 25–31PubMedGoogle Scholar
  28. 28.
    Pantel K, Izbicki J, Passlick B et al. (1996) Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 347: 649–653PubMedCrossRefGoogle Scholar
  29. 29.
    Rye PD, Hoifodt HK, Overli GE, Fodstad O (1997) Immunobead filtration: a novel approach for the isolation and propagation of tumor cells. Am J Pathol 150: 99–106PubMedGoogle Scholar
  30. 30.
    Schlimok G, Funke I, Holzmann B et al. (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17–1A monoclonal antibodies. Proc Natl Acad Sci U S A 84: 8672–8676PubMedCrossRefGoogle Scholar
  31. 31.
    Wiedswang G, Borgen E, Karesen R et al. (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21: 3469–3478PubMedCrossRefGoogle Scholar
  32. 32.
    Doglioni C, Dell’Orto P, Zanetti G et al. (1990) Cytokeratin-immunoreactive cells of human lymph nodes and spleen in normal and pathological conditions. An immunocytochemical study. Virchows Arch A Pathol Anat Histopathol 416: 479–490PubMedCrossRefGoogle Scholar
  33. 33.
    Pantel K, Muller V, Auer M et al. (2003) Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res 9: 6326–6334PubMedGoogle Scholar
  34. 34.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4: 448–456PubMedCrossRefGoogle Scholar
  35. 35.
    Hermanek P, Hutter RV, Sobin LH, Wittekind C (1999) International Union Against Cancer. Classification of isolated tumor cells and micrometastasis. Cancer 86: 2668–2673PubMedCrossRefGoogle Scholar
  36. 36.
    Brugger W, Buhring HJ, Grunebach F et al. (1999) Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumor cells. J Clin Oncol 17: 1535–1544PubMedGoogle Scholar
  37. 37.
    Bostick PJ, Chatterjee S, Chi DD et al. (1998) Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J Clin Oncol 16: 2632–2640PubMedGoogle Scholar
  38. 38.
    Krismann M, Todt B, Schroder J et al. (1995) Low specificity of cytokeratin 19 reverse transcriptase-polymerase chain reaction analyses for detection of hematogenous lung cancer dissemination. J Clin Oncol 13: 2769–2775PubMedGoogle Scholar
  39. 39.
    Ruud P, Fodstad O, Hovig E (1999) Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells. Int J Cancer 80: 119–125PubMedCrossRefGoogle Scholar
  40. 40.
    Traweek ST, Liu J, Battifora H (1993) Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction. Am J Pathol 142: 1111–1118PubMedGoogle Scholar
  41. 41.
    Zippelius A, Kufer P, Honold G et al. (1997) Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow. J Clin Oncol 15: 2701–2708PubMedGoogle Scholar
  42. 42.
    Cote RJ, Rosen PP, Hakes TB et al. (1988) Monoclonal antibodies detect occult breast carcinoma metastases in the bone marrow of patients with early stage disease. Am J Surg Pathol 12: 333–340PubMedCrossRefGoogle Scholar
  43. 43.
    Pantel K, Schlimok G, Angstwurm M et al. (1994) Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow. J Hematother 3: 165–173PubMedGoogle Scholar
  44. 44.
    Klein CA, Schmidt KO, Schardt JA et al. (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A 96: 4494–4499PubMedCrossRefGoogle Scholar
  45. 45.
    Klein CA, Blankenstein TJ, Schmidt-Kittler O et al. (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360: 683–689PubMedCrossRefGoogle Scholar
  46. 46.
    Mueller P, Carroll P, Bowers E et al. (1998) Low frequency epithelial cells in bone marrow aspirates from prostate carcinoma patients are cytogenetically aberrant. Cancer 83: 538–546PubMedCrossRefGoogle Scholar
  47. 47.
    Pantel K, Felber E, Schlimok G (1994) Detection and characterization of residual disease in breast cancer. J Hematother 3: 315–322PubMedGoogle Scholar
  48. 48.
    Borgen E, Beiske K, Trachsel S et al. (1998) Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J Pathol 185: 427–434PubMedCrossRefGoogle Scholar
  49. 49.
    Naume B, Borgen E, Nesland JM et al. (1998) Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int J Cancer 78: 556–560PubMedCrossRefGoogle Scholar
  50. 50.
    Cote RJ, Shi SR, Beattie EJ et al. (1997) Automated detection of occult bone marrow micrometastases in patients with operable lung carcinoma. Proc ASCO 16: 458a-Google Scholar
  51. 51.
    Makarewicz B, McDuffie L, Shi SR et al. (1997) Immunohistochemical detection of occult micrometastases using an automated intelligent microscopy system. Proc Am Assoc Cancer 38: 269-Google Scholar
  52. 52.
    Osborne MP, Wong GY, Asina S et al. (1991) Sensitivity of immunocytochemical detection of breast cancer cells in human bone marrow. Cancer Res 51: 2706–2709PubMedGoogle Scholar
  53. 53.
    Martin VM, Siewert C, Scharl A et al. (1998) Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS. Exp Hematol 26: 252–264PubMedGoogle Scholar
  54. 54.
    Naume B, Borgen E, Beiske K et al. (1997) Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother 6: 103–114PubMedGoogle Scholar
  55. 55.
    Naume B, Borgen E, Nesland JM et al. (1998) Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int J Cancer 78: 556–560PubMedCrossRefGoogle Scholar
  56. 56.
    Racila E, Euhus D, Weiss AJ et al. (1998) Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A 95: 4589–4594PubMedCrossRefGoogle Scholar
  57. 57.
    Otte M, Deppert K, Ebel S et al. (2000) Immunomagnetic enrichment of disseminated tumor cells from bone marrow of carcinoma patients. Proc Am Assoc Cancer 41: 390-Google Scholar
  58. 58.
    Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689PubMedGoogle Scholar
  59. 59.
    Gribben JG, Freedman AS, Neuberg D et al. (1991) Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 325: 1525–1533PubMedCrossRefGoogle Scholar
  60. 60.
    Harris CC, Hollstein M (1993) Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329: 1318–1327PubMedCrossRefGoogle Scholar
  61. 61.
    Hayashi N, Arakawa H, Nagase H et al. (1994) Genetic diagnosis identifies occult lymph node metastases undetectable by the histopathological method. Cancer Res 54: 3853–3856PubMedGoogle Scholar
  62. 62.
    Riethmuller G, Schneider GE, Schlimok G et al. (1994) Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes‘ C colorectal carcinoma. German Cancer Aid 17–1A Study Group. Lancet 343: 1177–1183PubMedCrossRefGoogle Scholar
  63. 63.
    Bostick PJ, Hoon DS, Cote RJ (1998) Detection of carcinoembryonic antigen messenger RNA in lymph nodes from patients with colorectal cancer. N Engl J Med 339: 1643–1644PubMedGoogle Scholar
  64. 64.
    Slade MJ, Smith BM, Sinnett HD et al. (1999) Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol 17: 870–879PubMedGoogle Scholar
  65. 65.
    Gerhard M, Juhl H, Kalthoff H et al. (1994) Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction. J Clin Oncol 12: 725–729PubMedGoogle Scholar
  66. 66.
    Ciudad J, San Miguel JF, Lopez-Berges MC et al. (1998) Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 16: 3774–3781PubMedGoogle Scholar
  67. 67.
    Jennings CD, Foon KA (1997) Recent advances in flow cytometry: application to the diagnosis of hematologic malignancy. Blood 90: 2863–2892PubMedGoogle Scholar
  68. 68.
    Gross HJ, Verwer B, Houck D et al. (1995) Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). Proc Natl Acad Sci U S A 92: 537–541PubMedCrossRefGoogle Scholar
  69. 69.
    Molino A, Pelosi G, Turazza M et al. (1997) Bone marrow micrometastases in 109 breast cancer patients: correlations with clinical and pathological features and prognosis. Breast Cancer Res Treat 42: 23–30PubMedCrossRefGoogle Scholar
  70. 70.
    Vredenburgh JJ, Silva O, Tyer C et al. (1996) A comparison of immunohistochemistry, two-color immunofluorescence, and flow cytometry with cell sorting for the detection of micrometastatic breast cancer in the bone marrow. J Hematother 5: 57–62PubMedGoogle Scholar
  71. 71.
    Wingren S, Guerrieri C, Franlund B, Stal O (1995) Loss of cytokeratins in breast cancer cells using multiparameter DNA flow cytometry is related to both cellular factors and preparation procedure. Anal Cell Pathol 9: 229–233PubMedGoogle Scholar
  72. 72.
    Ridell B, Landys K (1979) Incidence and histopathology of metastases of mammary carcinoma in biopsies from the posterior iliac crest. Cancer 44: 1782–1788PubMedCrossRefGoogle Scholar
  73. 73.
    Braun S, Pantel K (1998) Prognostic significance of micrometastatic bone marrow involvement. Breast Cancer Res Treat 52: 201–216PubMedCrossRefGoogle Scholar
  74. 74.
    Pantel K, Felber E, Schlimok G (1994) Detection and characterization of residual disease in breast cancer. J Hematother 3: 315–322PubMedGoogle Scholar
  75. 75.
    Borgen E, Naume B, Nesland JM et al. (2001) Use of automated microscopy for the detection of disseminated tumor cells in bone marrow samples. Cytometry 46: 215–221PubMedCrossRefGoogle Scholar
  76. 76.
    Borgen E, Beiske K, Trachsel S et al. (1998) Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J Pathol 185: 427–434PubMedCrossRefGoogle Scholar
  77. 77.
    Pantel K, Schlimok G, Braun S et al. (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85: 1419–1424PubMedCrossRefGoogle Scholar
  78. 78.
    Putz E, Witter K, Offner S et al. (1999) Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res 59: 241–248PubMedGoogle Scholar
  79. 79.
    Schmidt-Kittler O, Ragg T, Daskalakis A et al. (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 100: 7737–7742PubMedCrossRefGoogle Scholar
  80. 80.
    Weckermann D, Muller P, Wawroschek F et al. (1999) Micrometastases of bone marrow in localized prostate cancer: correlation with established risk factors. J Clin Oncol 17: 3438–3443PubMedGoogle Scholar
  81. 81.
    Meng S, Tripathy D, Shete S et al. (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 101: 9393–9398PubMedCrossRefGoogle Scholar
  82. 82.
    Solakoglu O, Maierhofer C, Lahr G et al. (2002) Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc Natl Acad Sci U S A 99: 2246–2251PubMedCrossRefGoogle Scholar
  83. 83.
    Braun S, Vogl F, Schlimok G et al. (2003) Pooled analysis of prognostic impact of bone marrow micrometastases: 10 year survival 4199 breast cancer patients. Breast Cancer Res Treat 67Google Scholar
  84. 84.
    Diel IJ, Solomayer EF, Costa SD et al. (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339: 357–363PubMedCrossRefGoogle Scholar
  85. 85.
    Fields KK, Elfenbein GJ, Trudeau WL et al. (1996) Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 14: 1868–1876PubMedGoogle Scholar
  86. 86.
    Datta YH, Adams PT, Drobyski WR et al. (1994) Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 12: 475–482PubMedGoogle Scholar
  87. 87.
    Vannucchi AM, Bosi A, Glinz S et al. (1998) Evaluation of breast tumour cell contamination in the bone marrow and leukapheresis collections by RT-PCR for cytokeratin-19 mRNA. Br J Haematol 103: 610–617PubMedCrossRefGoogle Scholar
  88. 88.
    Courtemanche DJ, Worth AJ, Coupland RW, MacFarlane JK (1991) Detection of micrometastases from primary breast cancer. Can J Surg 34: 15–19PubMedGoogle Scholar
  89. 89.
    Porro G, Menard S, Tagliabue E et al. (1988) Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients. Cancer 61: 2407–2411PubMedCrossRefGoogle Scholar
  90. 90.
    Salvadori B, Squicciarini P, Rovini D et al. (1990) Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens of breast cancer patients. Eur J Cancer 26: 865–867PubMedGoogle Scholar
  91. 91.
    Untch M, Kahlert S, Funke I et al. (1999) Detection of cytokeratin (CK) 18 positive cells in the bone marrow (BM) of breast cancer patients - no prediction of bad outcome. Proc ASCO 18: 693a-Google Scholar
  92. 92.
    Mathieu MC, Friedman S, Bosq J et al. (1990) Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis in breast cancer. Breast Cancer Res Treat 15: 21–26PubMedCrossRefGoogle Scholar
  93. 93.
    Singletary SE, Larry L, Tucker SL, Spitzer G (1991) Detection of micrometastatic tumor cells in bone marrow of breast carcinoma patients. J Surg Oncol 47: 32–36PubMedCrossRefGoogle Scholar
  94. 94.
    Funke I, Schraut W (1998) Meta-analyses of studies on bone marrow micrometastases: an independent prognostic impact remains to be substantiated. J Clin Oncol 16: 557–566PubMedGoogle Scholar
  95. 95.
    Braun S, Vogl FD, Naume B et al. (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353: 793–802PubMedCrossRefGoogle Scholar
  96. 96.
    Braun S, Schindlbeck C, Hepp F et al. (2001) Occult tumor cells in bone marrow of patients with locoregionally restricted ovarian cancer predict early distant metastatic relapse. J Clin Oncol 19: 368–375PubMedGoogle Scholar
  97. 97.
    Marth C, Kisic J, Kaern J et al. (2002) Circulating tumor cells in the peripheral blood and bone marrow of patients with ovarian carcinoma do not predict prognosis. Cancer 94: 707–712PubMedCrossRefGoogle Scholar
  98. 98.
    Janni W, Hepp F, Strobl B et al. (2003) Patterns of relapse influenced by hematogenous tumor cell dissemination in patients with cervical carcinoma of the uterus. Cancer 97: 405–411PubMedCrossRefGoogle Scholar
  99. 99.
    Scheungraber C, Muller B, Kohler C et al. (2002) Detection of disseminated tumor cells in patients with cervical cancer. J Cancer Res Clin Oncol 128: 329–335PubMedCrossRefGoogle Scholar
  100. 100.
    Goldhirsch A, Glick JH, Gelber RD et al. (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16: 1569–1583PubMedCrossRefGoogle Scholar
  101. 101.
    Janni W, Rack B, Schindlbeck C et al. (2004) Association of persistence of isolated tumor cells (ITC) in bone marrow (BM) of breast cancer patients with risk for relapse. Proc ASCOGoogle Scholar
  102. 102.
    Wiedswang G, Borgen E, Karesen R et al. (2003) The presence of isolated tumor cells in the bone marrow three years after diagnosis in disease free breast cancer patients predicts an unfavorable outcome. Breast Cancer Res Treat 67:Google Scholar
  103. 103.
    Janni W, Wiedswang G, Fehm T et al. (2006) Persistence of disseminated tumor cells (DTC) in bone marrow (BM) during Follow-up predicts increased risk for relapse – Up-date of the pooled European data. Breast Cancer Res Treat 70:Google Scholar
  104. 104.
    Coombes RC, Berger U, Mansi J et al. (1986) Prognostic significance of micrometastases in bone marrow in patients with primary breast cancer. NCI Monogr 1: 51–53PubMedGoogle Scholar
  105. 105.
    Kirk SJ, Cooper GG, Hoper M et al. (1990) The prognostic significance of marrow micrometastases in women with early breast cancer. Eur J Surg Oncol 16: 481–485PubMedGoogle Scholar
  106. 106.
    Dearnaley DP, Ormerod MG, Sloane JP (1991) Micrometastases in breast cancer: long-term follow-up of the first patient cohort. Eur J Cancer 27: 236–239PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • W. Janni
    • 1
  • T. Fehm
    • 3
  • B. Rack
    • 1
  • V. Müller
    • 2
  • E. Solomayer
    • 3
  • K. Pantel
    • 4
  • H. Sommer
    • 1
  • C. Schindlbeck
    • 1
  • J. Jückstock
    • 1
  • K. Friese
    • 1
  1. 1.Universitätsfrauenklinik Innenstadt LMUMünchenDeutschland
  2. 2.Klinik und Poliklinik für GynäkologieUniversitätsklinikum Hamburg-EppendorfHamburg-EppendorfDeutschland
  3. 3.Universitätsfrauenklinik TübingenTübingenDeutschland
  4. 4.Institut für TumorbiologieUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations