Advertisement

Ecotoxicological Analyses of Springs of a Brazilian Northeast Conservation Unit

  • Elielma Lima de Sousa
  • Natália Jovita Pereira
  • Janderson Bruzaca Gomes
  • Margareth Marques dos Santos
  • Débora Martins Silva SantosEmail author
Article

Abstract

Ecotoxicological assessment is an useful tool to evaluate toxicity of pollutants on aquatic organisms. In the present study, we evaluated the lethal effect, micronucleus frequency and histological changes in gills of fish species Danio rerio exposed to water from two sources of a Conservation Unit. We performed acute tests, Micronucleus Test in blood cells and histological analysis of gills. As results, the springs had no lethal toxic effects on the species. Nuclear alterations were present in erythrocytes in organisms exposed to water from the two sampled sites. As well, we found moderate to severe gill abnormalities generating the impairment of respiratory vital functions of these organisms. This study indicates that the water of the springs does not present lethal toxic effect but damage in gills for species from short exposure time.

Keywords

Erythrocytes Histological changes Toxic effect 

Notes

Acknowledgement

The authors are grateful to all the researchers of Research Group Biology and Aquatic Environment (Gp BioAqua) of State University of Maranhão (Uema) and Laboratory of Ecotoxicology of the UFMA.

Funding

This study wasn’t financed.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and/or Animal Participants

All procedures performed involving animals was in accordance with the ethical standards of the Animal Ethics and Experimentation Committee of the State University of Maranhão (No. 21/2016) and State Secretariat for Environment and Natural Resources - Sema (Protocol No. 200527/2017). This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. ABNT – Associação Brasileira de Normas Técnicas (2004) Ecotoxicologia aquática – toxicidade aguda – método de ensaio com peixes. NBR 15088Google Scholar
  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular (2002) Biology of the cell, 4th edn. New York: Garland Science. ISBN-10: 0-8153-3218-1Google Scholar
  3. Ale A, Bacchetta C, Rossi AS, Galdopórpora J, Desimone MF, Fernando R, Cazenave J (2018) Nanosilver toxicity in gills of a neotropical fish: Metal accumulation, oxidative stress, histopathology and other physiological effects. Ecotoxicol Environ Saf 148:976–984.  https://doi.org/10.1016/j.ecoenv.2017.11.072 CrossRefGoogle Scholar
  4. Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135.  https://doi.org/10.1016/0165-1218(95)90078-0 CrossRefGoogle Scholar
  5. Barbieri MDP, Santos CS, Rita FS, Morais MA (2013) Qualidade microbiológica da água de algumas nascentes de Muzambinho/MG. Rev Agrogeoambiental 1:79–84.  https://doi.org/10.18406/2316-1817v1n12013588 CrossRefGoogle Scholar
  6. Barros RA, Barbosa RS (2015) Unidades de Conservação: um estudo sobre os impactos ambientais resultantes da extração de madeira na Reserva Biológica do Gurupi-MA. InterEspaço 1:270–292.  https://doi.org/10.18766/2446-6549/interespaco.v1n2p270-292 CrossRefGoogle Scholar
  7. Bony S, Gaillard I, Devaux A (2010) Genotoxicity assessment of two vineyard pesticides in zebrafish. Int J Environ Anal Chem 90:421–428.  https://doi.org/10.1080/03067310903033659 CrossRefGoogle Scholar
  8. Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, Hollert H (2016) Effect-directed analysis supporting monitoring of aquatic environments—an in-depth overview. Sci Total Environ 544:1073–1118.  https://doi.org/10.1016/j.scitotenv.2015.11.102 CrossRefGoogle Scholar
  9. Brasil (2012) Lei nº. 12.727, de 17 de outubro de 2012. Altera a Lei n°. 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, DF, 18 outubro de 2012. Seção 1, p. 1. http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651.htm . Accessed 02 Jul 2018
  10. Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotrop Ichthyol 5:327–336.  https://doi.org/10.1590/S1679-62252007000300013 CrossRefGoogle Scholar
  11. Carrasco KR, Tilbury KL, Myers MS (1990) Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47:2123–2136.  https://doi.org/10.1139/f90-237 CrossRefGoogle Scholar
  12. Carvalho-Neta RNF, Sousa DBP, Macêdo Sobrinho IC, Horton EY, Almeida ZS, Tchaicka L, Sousa AL (2015) Genotoxic and hematological parameters in Colossoma macropomum (Pisces, Serrasalmidae) as biomarkers for environmental impact assessment in a protected area in northeastern Brazil. Environ Sci Pollut Res 22:15994–16003.  https://doi.org/10.1007/s11356-015-4748-4 CrossRefGoogle Scholar
  13. Casatti L, Teresa FB, Gonçalves-Souza T, Bessa E, Manzotti AR, Gonçalves CDS, Zeni JDO (2012) From forests to cattail: how does the riparian zone influence stream fish? Neotrop Ichthyol 10:205–214.  https://doi.org/10.1590/S1679-62252012000100020 CrossRefGoogle Scholar
  14. Castro JS, Silva JS, Freitas LC, Carvalho-Neta RNF (2014) Biomarcadores histopatológicos na espécie Hoplias malabaricus (Pisces, Osteichthyes, Erythrinidae) em uma Unidade de Conservação de São Luís (MA). Arquivo Brasileiro de Medicina. Vet Zootec 66:1687–1694.  https://doi.org/10.1590/1678-7414 CrossRefGoogle Scholar
  15. Castro JS, França CL, Fernandes JFF, Silva JS, Carvalho-Neta RNF, Teixeira EG (2018) Biomarcadores histológicos em brânquias de Sciades herzbergii (Siluriformes, Ariidae) capturados no Complexo Estuarino de São Marcos, Maranhão. Arquiv Brasil Med Vet Zootecnia 70:2.  https://doi.org/10.1590/1678-4162-9906 CrossRefGoogle Scholar
  16. Ciaccio C, Di Pierro D, Sbardella D, Tundo GR, Curatolo P, Galasso C, Rossi M (2017) Oxygen exchange and energy metabolism in erythrocytes of Rett syndrome and their relationships with respiratory alterations. Mol Cell Biochem 426:205–213.  https://doi.org/10.1007/s11010-016-2893-9 CrossRefGoogle Scholar
  17. Daneluz D, Tessaro D (2015) Padrão físico-químico e microbiológico da água de nascentes e poços rasos de propriedades rurais da região sudoeste do Paraná. Arq Inst Biol 82:1–5.  https://doi.org/10.1590/1808-1657000072013 CrossRefGoogle Scholar
  18. D’Costa AH, Shyama SH, Praveen Kumar MK, Fernandes TM (2018) Induction of DNA damage in the peripheral blood of zebrafish (Danio rerio) by an agricultural organophosphate pesticide, monocrotophos. Int Aquat Res 10:243–225.  https://doi.org/10.1007/s40071-018-0201-x CrossRefGoogle Scholar
  19. Del-Guercio AMF, Christofoletti CA, Fontanetti CS (2017) Avaliação da eficiência do tratamento de esgoto doméstico pelo teste do micronúcleo em Oreochromis niloticus (Cichlidae). Eng Sanit Ambient 22:1121–1128.  https://doi.org/10.1590/s1413-4152201773709 CrossRefGoogle Scholar
  20. Duarte-dos-Santos AK, Cutrim MVJ, Ferreira FS, Luvizotto-Santos R, Azevedo-Cutrim ACG, Araújo BO, Oliveira ALL, Furtado J, Diniz SCD (2017) Aquatic life protection index of an urban river Bacanga basin in northern Brazil, São Luís – MA. Braz J Biol 77:602–615.  https://doi.org/10.1590/1519-6984.01016 CrossRefGoogle Scholar
  21. Faßbender C, Braunbeck T (2013) Assessment of genotoxicity in gonads, liver and gills of Zebrafish (Danio rerio) by use of the comet assay and micronucleus test after in vivo exposure to methyl methanesulfonate. Bull Environ Contam Toxicol 91:89–95.  https://doi.org/10.1007/s00128-013-1007-6 CrossRefGoogle Scholar
  22. Fenech M (2003) The in vitro micronucleus technique. Mutat Res 455:81–95.  https://doi.org/10.1016/S0027-5107(00)00065-8 CrossRefGoogle Scholar
  23. Filho JS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, Rosolen JM, Grisolia CK (2014) Evaluation of carbon nanotubes network toxicity in zebrafish(danio rerio) model. Environ Res 134:9–16.  https://doi.org/10.1016/j.envres.2014.06.017 CrossRefGoogle Scholar
  24. Freitas RA, Correia KM, Tavares MGO, Oliveira GMC, Contra A, Riciole H, Nunes I, Fagundes J, Filho NRA (2013) Avaliação das brânquias de Danio rerio expostos a diferentes concentrações de gasolina e diesel. Rev Ecotoxicol Meio Ambient 23:59–66Google Scholar
  25. Galindo T, Silva E, Rosário I, Valenciennes (2012) Indução de micronúcleos e toxicidade por efluente doméstico em duas populações de Bathygobius soporator Braz J Aquat Sci Technol 16:1837.  https://doi.org/10.14210/bjast.v16n1.p1-7 CrossRefGoogle Scholar
  26. Grisolia CK, Cordeiro CMT (2000) Variability in micronucleus induction with different mutagens applied to several species of fish. Genet Mol Biol 23:235–239.  https://doi.org/10.1590/S1415-47572000000100041 CrossRefGoogle Scholar
  27. Hartmann A, Elhajouji A, Kiskinis E, Poeller F, Markus HJ, Fjällman A, Frieauff W, Suter W (2001) Use of the alkaline comet assay for industrial genotoxicity screening: comparative investigation with the micronucleus test. Food Chem Toxicol 39:843–858.  https://doi.org/10.1016/S0278-6915(01)00031-X CrossRefGoogle Scholar
  28. Hoz MFT, García AM, Castro MG, Díaz AO (2014) Histochemical and scanning electron microscopic approaches to gills in juveniles of Odontesthes argentinensis (Actinopterygii, Atherinopsidae). Int J Aquat Sci 5:154–166Google Scholar
  29. IBGE. Regiões e Estados do Brasil. Maranhão. https://www.ibge.gov.br/cidades-e-estados/ma/.html? . Accessed 04 Feb 2019
  30. Júnior CDSM, Juen L, Hamada N (2015) Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol Indic 48:303–311.  https://doi.org/10.1016/j.ecolind.2014.08.021 CrossRefGoogle Scholar
  31. Lemos CT, Rodel PM, Terra NT, Oliveira NCD, Erdtmann B (2007) River water genotoxicity evaluation using micronucleus assay in fish erythrocytes. Ecotoxicol Environ Saf 66:391–401.  https://doi.org/10.1016/j.ecoenv.2006.01.004 CrossRefGoogle Scholar
  32. Lidskog R, Bishop K, Eklöf K, Ring E, Åkerblom S, Sandström C (2018) From wicked problem to governable entity? The effects of forestry on mercury in aquatic ecosystems. Forest Policy Econ 90:90–96.  https://doi.org/10.1016/j.forpol.2018.02.001 CrossRefGoogle Scholar
  33. Maranhão (1991) Decreto nº 11.900 de 11 de junho de 1991. Cria, no Estado do Maranhão, a Área de Proteção Ambiental da Baixada Maranhense, compreendendo 03 (três) Sub-Áreas: Baixo Pindaré, Baixo Mearim-Grajaú e Estuário do Mearim-Pindaré – Baía de São Marcos incluindo a Ilha dos Caranguejos. http://oads.org.br/leis/2192.pdf . Accessed 23 Aug 2018
  34. Martinez-Haro M, Beiras R, Bellas J, Capela R, Coelho JP, Lopes I, Marques JC (2015) A review on the ecological quality status assessment in aquatic systems using community based indicators and ecotoxicological tools: what might be the added value of their combination? Ecol Ind 48:8–16.  https://doi.org/10.1016/j.ecolind.2014.07.024 CrossRefGoogle Scholar
  35. Meletti PC (2003) Avaliação da degradação ambiental por meio de testes de toxicidade com sedimento e de análises histopatológicas em peixes São Paulo. Doctoral dissertation, Universidade de São PauloGoogle Scholar
  36. Moiseenko TI, Kudryavtseva LP, Gashkina NA (2005) Assessment of the geochemical background and anthropogenic load by bioaccumulation of microelements in Fish. Water Resour 32:640–652.  https://doi.org/10.1007/s11268-005-0081-5 CrossRefGoogle Scholar
  37. Ogundiran MA, Fawole OO, Adewoye SO (2009) Pathologic lesions in the gills of Clarias gariepinus exposed to sublethal concentrations of soap and detergent effluents. Anim Biol 3:78–82Google Scholar
  38. Oliveira SRS, Pinheiro-Sousa DB, Almeida ZS, Castro JS, Carvalho-Neta RNF (2016) Lesões histopatológicas como biomarcadores de contaminação aquática em Oreochromis niloticus (Osteichthyes, Cichlidae) de uma área protegida no Maranhão. Rev Bras Engenharia Pesca 9:12–26.  https://doi.org/10.18817/repesca.v9i1.1105 CrossRefGoogle Scholar
  39. Olsvik PA, Gundersen P, Andersen RA, Zachariassen KE (2001) Metal accumulation and metallothionein in brown trout, Salmo trutta, from two Norwegian rivers differently contaminated with Cd, Cu and Zn. Comp Biochem Physiol 128:189–201.  https://doi.org/10.1016/S1532-0456(00)00191-5 CrossRefGoogle Scholar
  40. Pinheiro-Sousa DB, Junior ART, Silva D, Santos RL, Neta RNFC (2019) A screening test based on hematological and histological biomarkers to evaluate the environmental impacts in tambaqui (Colossoma macropomum) from a protected area in Maranhão, Brazilian Amazon. Chemosphere 214:445–451.  https://doi.org/10.1016/j.chemosphere.2018.09.146 CrossRefGoogle Scholar
  41. Poleksić V, Mitrović-Tutundžić V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. Sublethal and chronic effects of pollutants on freshwater fish. Oxford, Reino Unido, pp 339–352Google Scholar
  42. Primavesi O, Freitas AR, Primavesi AC, Oliveira HT (2002) Water quality of Canchim’s creek watershed in São Paulo, SP, Brazil, occupied by beef and dairy cattle activities. Brazilian. Arch Biol Technol 45:209–217.  https://doi.org/10.1590/S1516-89132002000200013 CrossRefGoogle Scholar
  43. Ramırez OAB, Garcıa FP (2005) Genotoxic damage in zebra fish (Danio rerio) by arsenic in waters from Zimapan. Hidalgo Mexico Mutagenesis 20:291–295.  https://doi.org/10.1093/mutage/gei039 CrossRefGoogle Scholar
  44. Ranzani-Paiva MJT, Pádua SB, Tavares-Dias ME, Gami MI (2013) Métodos para análise hematológica em peixes. Maringá, BrazilCrossRefGoogle Scholar
  45. Ruzafa PA, Marcos PM, Marcos C (2018) From fish physiology to ecosystems management: keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences. Ecol Ind 90:334–345.  https://doi.org/10.1016/j.ecolind.2018.03.019 CrossRefGoogle Scholar
  46. Santos DMS, Melo MRS, Mendes DCS, Rocha IKBS, Silva JPL, Cantanhêde SM, Meletti PC (2014) Histological changes in gills of two fish species as indicators of water quality in Jansen Lagoon (São Luís, Maranhão State, Brazil). Int J Environ Res Public Health 11:12927–12937.  https://doi.org/10.3390/ijerph111212927 CrossRefGoogle Scholar
  47. Santos EPP, Veiga WA, Gonçalves MRS, Thomé MPM de Varre-Sai (2015) Coliformes Totais e Termotolerantes em água de nascentes utilizadas para o consumo humano na zona rural do município. RJ Scientia Plena 11:05. https://www.scientiaplena.org.br/sp/article/view/2244/1199 . Accessed 02 May 2017
  48. Santos AKD, Cutrim MVJ, Ferreira FS, Santos RL, Cutrim ACGA, Araújo BO, Diniz SCD (2017) Aquatic life protection index of an urban river Bacanga basin in northern Brazil, São Luís-MA. Braz J Biol 77:602–615.  https://doi.org/10.1590/1519-6984.01016 CrossRefGoogle Scholar
  49. Udroiu I (2006) The micronucleus test in piscine erythrocytes. Aquat Toxicol 79:201–204.  https://doi.org/10.1016/j.aquatox.2006.06.013 CrossRefGoogle Scholar
  50. Van Der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149.  https://doi.org/10.1016/S1382-6689(02)00126-6 CrossRefGoogle Scholar
  51. Wernersson AS, Carere M, Maggi C, Tusil P, Soldan P, James A, Buchinger S (2015) The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ Sci Europe 27:1–11.  https://doi.org/10.1186/s12302-015-0039-4 CrossRefGoogle Scholar
  52. Zhang H (2007) The orientation of water quality variation from the metropolis river-Huangpu River. Shanghai Environ Monit Assess 127:429–434.  https://doi.org/10.1007/s10661-006-9292-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elielma Lima de Sousa
    • 1
  • Natália Jovita Pereira
    • 2
  • Janderson Bruzaca Gomes
    • 2
  • Margareth Marques dos Santos
    • 3
  • Débora Martins Silva Santos
    • 4
    Email author
  1. 1.Postgraduate Program in Agricultural MicrobiologyState University of Sao Paulo (Unesp)São PauloBrazil
  2. 2.Postgraduate Program in Aquatic Resources and FisheriesState University of Maranhão (Uema)São LuísBrazil
  3. 3.Graduated in BiologyState University of Maranhão (Uema)São LuísBrazil
  4. 4.Postgraduate Program in Aquatic Resources and Fisheries, Department of Chemistry and BiologyState University of Maranhão (Uema)São LuísBrazil

Personalised recommendations