Advertisement

Quantifying the Coupled Kinetic Reactions of Metals/Metalloids on Iron and Manganese Oxides

  • Zhenqing ShiEmail author
Perspective

Abstract

Quantifying the coupled kinetic reactions of metals/metalloids on iron and manganese oxides is essential for predicting the fate of contaminants in the environment. In this perspective, a few key issues related to developing the quantitative models for the coupled kinetic reactions of metal and metalloids are discussed, including adsorption/desorption processes, redox reactions, and mineral dissolution/transformation. Future research areas are also briefly discussed.

Keywords

Kinetics Model Adsorption Redox reactions Coupling Iron oxides Manganese oxides 

Notes

Acknowledgements

Funding was provided by the Fundamental Research Funds for the Central Universities (No. 2018PY10) and the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06N569).

References

  1. Buffle J, Zhang Z, Startchev K (2007) Metal flux and dynamic speciation at (bio)interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ Sci Technol 41:7609–7620CrossRefGoogle Scholar
  2. Buffle J, Wilkinson KJ, van Leeuwen HP (2009) Chemodynamics and bioavailability in natural waters. Environ Sci Technol 43:7170–7174CrossRefGoogle Scholar
  3. Farrell J, Chaudhary BK (2013) Understanding arsenate reaction kinetics with ferric hydroxides. Environ Sci Technol 47:8342–8347CrossRefGoogle Scholar
  4. Feng X, Wang P, Shi Z, Kwon KD, Zhao H, Yin H, Lin Z, Zhu M, Liang X, Liu F, Sparks DL (2018) A quantitative model for the coupled kinetics of arsenic adsorption/desorption and oxidation on manganese oxides. Environ Sci Technol Letters 5:175–180CrossRefGoogle Scholar
  5. Hu S, Lu Y, Peng L, Wang P, Zhu M, Dohnalkova AC, Chen H, Lin Z, Dang Z, Shi Z (2018) Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: a mechanistic and quantitative study. Environ Sci Technol 52:11632–11641Google Scholar
  6. Huang J-H, Voegelin A, Pombo SA, Lazzaro A, Zeyer J, Kretzschmar R (2011a) Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environ Sci Technol 45:7701–7709CrossRefGoogle Scholar
  7. Huang JH, Elzinga EJ, Brechbuehl Y, Voegelin A, Kretzschmar R (2011b) Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides. Environ Sci Technol 45:2804–2810CrossRefGoogle Scholar
  8. Kocar BD, Fendorf S (2009) Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environ Sci Technol 43:4871–4877CrossRefGoogle Scholar
  9. Lafferty BJ, Ginder-Vogel M, Sparks DL (2010a) Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments. Environ Sci Technol 44:8460–8466CrossRefGoogle Scholar
  10. Lafferty BJ, Ginder-Vogel M, Zhu MQ, Livi KJT, Sparks DL (2010b) Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. Environ Sci Technol 44:8467–8472CrossRefGoogle Scholar
  11. Lan S, Ying H, Wang X, Liu F, Tan WF, Huang QY, Zhang J, Feng XH (2018) Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II). Water Res 128:92–101CrossRefGoogle Scholar
  12. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68CrossRefGoogle Scholar
  13. Lin J, Hu S, Liu T, Li F, Peng L, Lin Z, Dang Z, Liu C, Shi Z (2019) Coupled kinetics model for microbially mediated arsenic reduction and adsorption/desorption on iron oxides: role of arsenic desorption induced by microbes. Environ Sci Technol 53:8892–8902CrossRefGoogle Scholar
  14. Liu C, Kota S, Zachara JM, Fredrickson JK, Brinkman CK (2001) Kinetic analysis of the bacterial reduction of goethite. Environ Sci Technol 35:2482–2490CrossRefGoogle Scholar
  15. Lu Y, Hu S, Wang Z, Ding Y, Lu G, Lin Z, Dang Z, Shi Z (2019) Ferrihydrite transformation under the impact of humic acid and Pb: kinetics, nanoscale mechanisms, and implications for C and Pb dynamics. Environ Sci: Nano 6:747–762Google Scholar
  16. Qiao J, Li X, Li F, Liu T, Young LY, Huang W, Sun K, Tong H, Hu M (2019) Humic substances facilitate arsenic reduction and release in flooded paddy soil. Environ Sci Technol 53:5034–5042CrossRefGoogle Scholar
  17. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56CrossRefGoogle Scholar
  18. Shi Z, Di Toro DM, Allen HE, Ponizovsky AA (2005) Modeling kinetics of Cu and Zn release from soils. Environ Sci Technol 39:4562–4568CrossRefGoogle Scholar
  19. Shi Z, Peng S, Wang P, Sun Q, Wang Y, Lu G, Dang Z (2018) Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides. Environ Sci 20:1691–1696Google Scholar
  20. Stern N, Mejia J, He S, Yang Y, Ginder-Vogel M, Roden EE (2018) Dual role of humic substances as electron donor and shuttle for dissimilatory iron reduction. Environ Sci Technol 52:5691–5699CrossRefGoogle Scholar
  21. Sun J, Prommer H, Siade AJ, Chillrud SN, Mailloux BJ, Bostick BC (2018) Model-based analysis of arsenic immobilization via iron mineral transformation under advective flows. Environ Sci Technol 52:9243–9253CrossRefGoogle Scholar
  22. Tian L, Shi Z, Lu Y, Dohnalkova A, Lin Z, Dang Z (2017) Kinetics of cation and oxyanion adsorption and desorption on ferrihydrite: roles of ferrihydrite binding sites and a unified model. Environ Sci Technol 51:10605–10614CrossRefGoogle Scholar
  23. Yan Z, Bond-Lamberty B, Todd-Brown KE, Bailey VL, Li S, Liu C, Liu C (2018) A moisture function of soil heterotrophic respiration that incorporates microscale processes. Nat Commun 9:2562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations