Advertisement

Metal Concentrations in Age-Groups of the Clam, Megapitaria squalida, from a Coastal Lagoon in Mexico: A Human Health Risk Assessment

  • Carolina Delgado-Alvarez
  • Jorge Ruelas-Inzunza
  • Ofelia Escobar-Sánchez
  • Rodolfo Covantes-Rosales
  • Irving B. Pineda-Pérez
  • C. Cristina Osuna-Martínez
  • Marisela Aguilar-Júarez
  • J. Isidro Osuna-López
  • Domenico Voltolina
  • Martín G. Frías-EspericuetaEmail author
Article

Abstract

The present study shows the human health risk of Cd, Cu, Hg and Zn by consumption of clams Megapitaria squalida from Northwest Mexico, collected in 2013. The mean concentration for each metal in the soft tissue was: Zn > Cu > Cd > Hg; and mean values of 68.89 ± 37.59—30.36 ± 27.19, 8.77 ± 1.35—6.80 ± 0.36, 4.47 ± 0.21—3.18 ± 0.63 and 0.99 ± 0.81—0.52 ± 0.16 µg/g, respectively. Clam age was significantly negatively correlated (p < 0.05) with soft tissue Zn concentrations. For all metals there is a low level of human health risk associated with the consumption of M. squalida, but it is necessary to determine the specific characteristics of the human population of the study site.

Keywords

Metals Clams Age Risk assessment 

Notes

Acknowledgements

Supported by projects Programa de Fomento y Apoyo a Proyectos de Investigación UAS 2012/059; Programa para el Desarrollo del Personal Docente CANE (year 3) and Consejo Nacional de Ciencia y Tecnología INFRA 2012-01-188029. To Y. Leyva-Vázquez for age analysis. OES thanks CONACYT for the Project Cátedras CONACYT (N° 2137).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alavian PSS, Hamidian AH, Ashrafi S, Eagderi S, Khazaee M (2017) Study on age-related bioaccumulation of some heavy metals in the soft tissue of rock oyster (Saccostrea cucullata) from Laft Port-Qeshm Island, Iran. Iranian J Fish Sci 16:897–906Google Scholar
  2. Aragón-Noriega EA (2016) Model selection to describe the growth of the squalid callista Megapitaria squalida from the eastern Gulf of California. J Shellfish Res 35:747–755.  https://doi.org/10.2983/035.035.0404 CrossRefGoogle Scholar
  3. Arellano-Martínez M, Quiñones-Arreola MF, Ceballos-Vázquez BP, Villalejo-Fuerte M (2006) Reproductive pattern of the squalid callista Megapitaria squalida from northwestern Mexico. J Shellfish Res 25:849–855.  https://doi.org/10.2983/0730-8000(2006)25%5b849:rpotsc%5d2.0.co;2 CrossRefGoogle Scholar
  4. Baqueiro-Cárdenas ER, Borabe L, Goldaracena-Islas CG, Rodríguez-Navarro J (2007) Los moluscos y la contaminación: una revisión. Rev Mex Biodiv 78:1–7.  https://doi.org/10.22201/ib.20078706e.2007.002.293 CrossRefGoogle Scholar
  5. Bilgin M, Uluturhan-Suzer E (2017) Assessment of trace metal concentrations and human health risk in clam (Tapes decussatus) and mussel (Mytilus galloprovincialis) from the Homa Lagoon (Eastern Aegean Sea). Environ Sci Pollut Res 24:4174–4184.  https://doi.org/10.1007/s11356-016-8163-2 CrossRefGoogle Scholar
  6. Chiesa S, Chainho P, Almeida Â, Figueira E, Soares AMVM, Freitas R (2017) Metals and As content in sediments and Manila clam Ruditapes philippinarum in the Tagus estuary (Portugal): impacts and risk for human consumption. Mar Pollut Bull 126:281–292.  https://doi.org/10.1016/j.marpolbul.2017.10.088 CrossRefGoogle Scholar
  7. Delgado-Alvarez C, Ruelas-Inzunza JR, Osuna-López JI, Frías-Espericueta MG (2015) Total mercury content in cultured oysters in NW Mexico: health risk assessment. Bull Environ Contam Toxicol 94:209–213.  https://doi.org/10.1007/s00128-014-1430-3 CrossRefGoogle Scholar
  8. Esposito G, Meloni D, Abete MC, Colombero G, Mantia M, Pastorino P, Prearo M, Pais A, Antuofermo E, Squadrone S (2018) The bivalve Ruditapes decussatus: a biomonitor of trace elements pollution in Sardinian coastal lagoons (Italy). Environ Pollut 242:1720–1728.  https://doi.org/10.1016/j.envpol.2018.07.098 CrossRefGoogle Scholar
  9. Gedik K, Ozturk RC (2018) Health risk perspectives of metal(loid) exposure via consumption of striped venus clam (Chamelea gallina Linnaeus, 1758). Hum Ecol Risk Assess.  https://doi.org/10.1080/10807039.2018.1460802 CrossRefGoogle Scholar
  10. Guo X, Feng C (2018) Biological toxicity response of Asian clam (Corbicula fluminea) to pollutants in surface water and sediment. Sci Total Environ 631–632:56–70.  https://doi.org/10.1016/j.scitotenv.2018.03.019 CrossRefGoogle Scholar
  11. Harris ED (1991) Copper transport: an overview. Proc Soc Exp Biol Med 196:130–140CrossRefGoogle Scholar
  12. Ke Y, Wang WX (2018) Metal accumulation, growth and reproduction of razor clam Sinonovacula constricta transplanted in a multi-metal contaminated estuary. Sci Total Environ 636:829–837.  https://doi.org/10.1016/j.scitotenv.2018.04.338 CrossRefGoogle Scholar
  13. Khristoforova NK, Chernova EN, Selin NI (2002) Changes of metal concentrations in soft tissues of Tridacnas with the age of the mollusks. Oceanology 42:530–535Google Scholar
  14. Leyva-Velázquez Y (2015) Evaluación biológica de un banco de almeja chocolata Megapitaria squalida, en la bahía de Navachiste, Guasave, Sinaloa, México. M Sci Thesis, Autonomous University of SinaloaGoogle Scholar
  15. Liu J, Cao L, Dou S (2017) Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar Pollut Bull 117:98–110.  https://doi.org/10.1016/j.marpolbul.2017.01.062 CrossRefGoogle Scholar
  16. Méndez L, Palacios E, Acosta B, Monsalvo-Spencer P, Alvarez-Castañeda T (2006) Heavy metals in the clam Megapitaria squalida collected from wild and phosphorite mine-impacted sites in Baja California, Mexico. Biol Trace Elem Res 110:275–287.  https://doi.org/10.1385/BTER:110:3:275 CrossRefGoogle Scholar
  17. Metcalfe-Smith J, Green RH, Grapentine LC (1996) Influence of biological factors on concentrations of metals in the tissues of freshwater mussels (Elliptio complanata and Lampsilis radiata radiata) from St. Lawrence River. Can J Fish Aquat Sci 53:205–219.  https://doi.org/10.1139/cjfas-53-1-205 CrossRefGoogle Scholar
  18. Moody JR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267.  https://doi.org/10.1021/ac50022a039 CrossRefGoogle Scholar
  19. National Aquaculture and Fishing Commission (2017) Anuario estadístico de acuacultura y pesca 2014. Instituto Nacional de Pesca, MazatlánGoogle Scholar
  20. National Wearing Industry Agency (2012) ¿Cuánto mide México?. Cámara Nacional de la Industria del Vestido, MexicoGoogle Scholar
  21. Newman MC, Unger MA (2002) Fundamentals of ecotoxicology. Lewis Publishers, Boca RatonGoogle Scholar
  22. Páez-Osuna F, Frías-Espericueta MG, Osuna-López JI (1995) Variability of trace metal concentrations in relation to season and gonadal maturation in the oyster Crassostrea iridescens (Hanley, 1854). Mar Environ Res 4:19–31.  https://doi.org/10.1016/0141-1136(94)00004-9 CrossRefGoogle Scholar
  23. Riisgård HU, Hansen S (1990) Biomagnification of mercury in a marine grazing food-chain: algal cells Phaeodactylum tricornutum, mussels Mytilus edulis and flounders Platichthys flesus studied by means of a stepwise-reduction-CVAA method. Mar Ecol Prog Ser 62:259–270.  https://doi.org/10.3354/meps062259 CrossRefGoogle Scholar
  24. Romo-Piñera AK, Escobar-Sánchez O, Ruelas-Inzunza J, Frías-Espericueta MG (2018) Total mercury in squalid callista Megapitaria squalida from the SW Gulf of California, Mexico: tissue distribution and human health risk. Bull Environ Contam Toxicol 100:356–360.  https://doi.org/10.1007/s00128-018-2271-2 CrossRefGoogle Scholar
  25. Ruelas-Inzunza J, Spanopoulos-Zarco P, Páez-Osuna F (2009a) Cd, Cu, Pb and Zn in clams and sediments from an impacted estuary by the oil industry in the southwestern Gulf of Mexico: concentrations and bioaccumulation factors. J Environ Sci Health 44:1503–1511.  https://doi.org/10.1080/1093452090326328 CrossRefGoogle Scholar
  26. Ruelas-Inzunza J, Páez-Osuna F, Zamora-Arellano N, Amezcua-Martínez F, Bojórquez-Leyva H (2009b) Mercury in biota and surficial sediments from Coatzacoalcos estuary, Gulf of Mexico: distribution and seasonal variation. Water Air Soil Poll 197:165–174.  https://doi.org/10.1007/s11270-008-9799-4 CrossRefGoogle Scholar
  27. Sfriso AA, Chiesa S, Sfriso A, Buosi A, Gobbo L, Gnolo AB, Argese E (2018) Spatial distribution, bioaccumulation profiles and risk for consumption of edible bivalves: a comparison among razor clam, Manila clam and cockles in the Venice Lagoon. Sci Total Environ 643:579–591.  https://doi.org/10.1016/j.scitotenv.2018.06.057 CrossRefGoogle Scholar
  28. US Environmental Protection Agency (2000) Risk-based concentration table. U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  29. US Food and Drug Administration (2006) Mercury levels in commercial fish and shellfish. Washington. http://www.cfsan.fda.gov/*frf/sea-mehg.html. Accessed 15 Feb 2019
  30. Wang Z, Wu H, Chen X, Gao Y (2013) Effects of age and environmental conditions on accumulation of heavy-metals Cd and Cu in Tegillarca granosa. Acta Ecol Sinica 33:6869–6875.  https://doi.org/10.5846/stxb201207020922 CrossRefGoogle Scholar
  31. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Carolina Delgado-Alvarez
    • 1
  • Jorge Ruelas-Inzunza
    • 2
  • Ofelia Escobar-Sánchez
    • 3
  • Rodolfo Covantes-Rosales
    • 4
  • Irving B. Pineda-Pérez
    • 4
  • C. Cristina Osuna-Martínez
    • 4
  • Marisela Aguilar-Júarez
    • 4
  • J. Isidro Osuna-López
    • 4
  • Domenico Voltolina
    • 5
  • Martín G. Frías-Espericueta
    • 4
    Email author
  1. 1.Universidad Politécnica de SinaloaMazatlánMexico
  2. 2.ITMAZ MazatlánMazatlánMexico
  3. 3.Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección de Cátedras CONACYTMexico CityMexico
  4. 4.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico
  5. 5.CIBNORMazatlánMexico

Personalised recommendations