Advertisement

Environmental Risk of Metal Contamination in Sediments of Tropical Reservoirs

  • Gabrielle R. QuadraEmail author
  • Adan Lino
  • Anna Sobek
  • Olaf Malm
  • Nathan Barros
  • Yago Guida
  • José Thomaz
  • Raquel Mendonça
  • Simone Cardoso
  • Carlos Estrada
  • Felipe Rust
  • Fábio Roland
Article

Abstract

Reservoir sediment can work as both sink and source for contaminants. Once released into the water column, contaminants can be toxic to biota and humans. We investigate potential ecological risk to benthic organisms by metals contamination in six reservoirs in Southeast Brazil. Results of the bioavailable fraction of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), zinc (Zn), and iron (Fe) in sediment samples are presented. Considering Cu, Cd, and Zn concentrations, about 6% of the samples exceeded the threshold effect levels of sediment quality guidelines. The comparison to sediment quality guidelines is conservative because we used a moderate metal extraction. Control of contaminant sources in these reservoirs is key because they are sources of water and food. The mixture toxicity assessment showed an increased incidence of toxicity to aquatic organisms showing that mixture toxicity should be taken into account in sediment assessment criteria.

Keywords

Guidelines Mixture toxicity Potential ecological risk Reservoir sediments Trace elements 

Notes

Acknowledgements

We are grateful for the study area map and scientific contribution provided by José Reinaldo Paranaiba. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. This work was also supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for Research Productivity Grant provided to FR (473141/2013–2).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

128_2019_2668_MOESM1_ESM.pdf (147 kb)
Electronic supplementary material 1 (PDF 147 kb)

References

  1. Adams WJ, Kimerle RA, Barnett JW Jr (1992) Sediment quality and aquatic life assessment. Environ Sci Technol 26:1864–1875.  https://doi.org/10.1021/es00034a001 CrossRefGoogle Scholar
  2. Araújo R, Botta-Paschoal CM, Silvério PF, Almeida FV, Rodrigues PF, Umbuzeiro GA, Jardim WF, Mozeto AA (2006) Application of toxicity identification evaluation to sediment in a highly contaminated water reservoir in southeastern Brazil. Environ Toxicol Chem 25:581–588.  https://doi.org/10.1897/05-144R.1 CrossRefGoogle Scholar
  3. Audry S, Schäfer J, Blanc G, Jouanneau JM (2004) Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ Pollut 132:413–426.  https://doi.org/10.1016/j.envpol.2004.05.025 CrossRefGoogle Scholar
  4. Barbosa JS, Cabral TM, Ferreira DN, Agnez-Lima LF, de Medeiros SB (2010) Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicol Environ Saf 73:320–325.  https://doi.org/10.1016/j.ecoenv.2009.10.008 CrossRefGoogle Scholar
  5. Barreto SRG, Nozaki J, de Oliveira E, do Nascimento Filho VF, Aragão PHA, Scarminio IS, Barreto WJ (2004) Comparison of metal analysis in sediments using EDXRF and ICP-OES with the HCl and Tessie extraction methods. Talanta 64:345–354.  https://doi.org/10.1016/j.talanta.2004.02.022 CrossRefGoogle Scholar
  6. Bing H, Zhou J, Wu Y, Wang X, Sun H, Li R (2016) Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environ Pollut 214:485–496.  https://doi.org/10.1016/j.envpol.2016.04.062 CrossRefGoogle Scholar
  7. Bonai NC, Souza-Franco GM, Fogolari O, Mocelin DJC, Dal Magro J (2009) Distribution of metals in the sediment of the Itá Reservoir, Brazil. Acta Limnol Bras 21:245–250Google Scholar
  8. Bothner MH, Ten Brink MB, Manheim FT (1998) Metal concentrations in surface sediments of Boston Harbor—changes with time. Mar Environ Res 45:127–155.  https://doi.org/10.1016/S0141-1136(97)00027-5 CrossRefGoogle Scholar
  9. Canadian Environmental Quality Guidelines (2002) Canadian sediment quality guidelines for the protection of aquatic life. https://www.pla.co.uk/Environment/Canadian-Sediment-Quality-Guidelines-for-the-Protection-of-Aquatic-Life.
  10. Cardoso-Silva S, de Lima Ferreira PA, Moschini-Carlos V, Figueira RCL, Pompêo M (2016) Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ Earth Sci 75:1–16.  https://doi.org/10.1007/s12665-015-4828-2 CrossRefGoogle Scholar
  11. Cavalcanti PP, Rodrigues LCA, Beijo LA, Barbosa S, Xavier TT, Magalhaes F (2014) Contamination from an affluent of Furnas reservoir by trace metals. Braz J Biol 74:877–885.  https://doi.org/10.1590/1519-6984.07013 CrossRefGoogle Scholar
  12. Chapman DV (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. World Health Organization, GenevaCrossRefGoogle Scholar
  13. Chu KW, Chow KL (2002) Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol 61:53–64.  https://doi.org/10.1016/S0166-445X(02)00017-6 CrossRefGoogle Scholar
  14. CONAMA – Conselho Nacional do Meio Ambiente. Resolução CONAMA nº 344, de 25 de março de 2004 (2004) https://www.mma.gov.br/
  15. Couto TB, Olden JD (2018) Global proliferation of small hydropower plants–science and policy. Front Ecol Environ 16:91–100CrossRefGoogle Scholar
  16. Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980.  https://doi.org/10.1016/j.envint.2004.03.001 CrossRefGoogle Scholar
  17. Fiszman M, Pfeiffer WC, de Lacerda LD (1984) Comparison of methods used for extraction and geochemical distribution of heavy metals in bottom sediments from Sepetiba Bay, RJ. Environ Technol 5:567–575.  https://doi.org/10.1080/09593338409384311 CrossRefGoogle Scholar
  18. Förstner U, Wittmann GT (1983) Metal pollution in the aquatic environment. Springer, New YorkGoogle Scholar
  19. Gimeno-García E, Andreu V, Boluda R (1995) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25.  https://doi.org/10.1016/0269-7491(95)00090-9 CrossRefGoogle Scholar
  20. Hira A, De Oliveira LG (2009) No substitute for oil? How Brazil developed its ethanol industry. Energy policy 37:2450–2456.  https://doi.org/10.1016/j.enpol.2009.02.037 CrossRefGoogle Scholar
  21. Hochstetler K, Keck ME (2007) Greening Brazil: environmental activism in state and society. Duke University Press, DurhamCrossRefGoogle Scholar
  22. Ingersoll CG, MacDonald DD, Wang N, Crane JL, Field LJ, Haverland PS, Kemble NE, Lindskoog RA, Severn C, Smorong DE (2001) Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines. Arch Environ Contam Toxicol 41:8–21.  https://doi.org/10.1007/s002440010216 CrossRefGoogle Scholar
  23. Iqbal J, Saleem M, Shah MH (2016) Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Chem Erde-Geochem 76:171–177.  https://doi.org/10.1016/j.chemer.2016.02.002 CrossRefGoogle Scholar
  24. Jordão CP, Silva AC, Pereira JL, Brune W (1999) Contaminação por crômio de águas de rios proveniente de curtumes em Minas Gerais. Quim Nova 22:47–52.  https://doi.org/10.1590/S0100-40421999000100010 CrossRefGoogle Scholar
  25. Konieczka P, Namiesnik J (2009) Quality assurance and quality control in the analytical chemical laboratory: a practical approach. CRC Press.Google Scholar
  26. Lee SE, Yoo DH, Son J, Cho K (2006) Proteomic evaluation of cadmium toxicity on the midge Chironomus riparius Meigen larvae. Proteomics 6:945–957.  https://doi.org/10.1002/pmic.200401349 CrossRefGoogle Scholar
  27. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf S, Wisser D (2011) High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502.  https://doi.org/10.1890/100125 CrossRefGoogle Scholar
  28. Limburg KE (2009) Aquatic ecosystem services introductory overviews aquatic ecosystem services. Elsevier, Amsterdam. https://doi.org/10.1016/b978-012370626-3.00004-1 CrossRefGoogle Scholar
  29. Linnik PM, Zubenko IB (2000) Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes Reserv Res Manag 5:11–21.  https://doi.org/10.1046/j.1440-1770.2000.00094.x CrossRefGoogle Scholar
  30. Lino AS, Galvão PMA, Longo RTL, Azevedo-Silva CE, Dorneles PR, Torres JPM, Malm O (2016) Metal bioaccumulation in consumed marine bivalves in Southeast Brazilian coast. J Trace Elem Med Biol 34:50–55.  https://doi.org/10.1016/j.jtemb.2015.12.004 CrossRefGoogle Scholar
  31. Machado PJO (2012) Diagnóstico ambiental e ordenamento territorial – instrumentos para a gestão da Bacia de Contribuição da Represa de Chapéu D’Uvas/MG (Doctoral dissertation, Universidade Federal Fluminense, Niterói, RJ)Google Scholar
  32. Malafaia JP, de Miranda AC, Gomes HP (2012) A Bacia do Rio Paraíba do Sul: cenário de uma atividade a partir de problemas ambientais. Revista Científica ANAP Brasil, 5Google Scholar
  33. Matos MF, Botta CMR, Fonseca AL (2014) Toxicity Identification Evaluation (Phase I) of water and sediment samples from a tropical reservoir contaminated with industrial and domestic effluents. Environ Monit Assess 186:7999–8006.  https://doi.org/10.1007/s10661-014-3982-4 CrossRefGoogle Scholar
  34. Matsumoto ST, Mantovani MS, Malaguttii MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol Biol 29:148–158.  https://doi.org/10.1590/S1415-47572006000100028 CrossRefGoogle Scholar
  35. McAllister L (2008) Making law matter: environmental protection and legal institutions in Brazil. Stanford University Press, Palo AltoCrossRefGoogle Scholar
  36. Mello FM (2013) The importance of reservoirs formed by dams (In Portuguese). Newsletters CBDB, 47Google Scholar
  37. Mendonça R, Kosten S, Sobek S, Cole JJ, Bastos AC, Albuquerque AL, Cardoso SJ, Roland F (2014) Carbon sequestration in a large hydroelectric reservoir: an integrative seismic approach. Ecosystems 17:430–441.  https://doi.org/10.1007/s10021-013-9735-3 CrossRefGoogle Scholar
  38. Mitra S (2003) Sample preparation techniques in analytical chemistry. Wiley, HobokenCrossRefGoogle Scholar
  39. Mudroch A, MacKnight SD (1994) Handbook of techniques for aquatic sediments sampling. CRC Press, Boca RatonCrossRefGoogle Scholar
  40. Mustajärvi L, Eek E, Cornelissen G, Eriksson-Wiklund AK, Undeman E, Sobek A (2017) In situ benthic flow-through chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants. Environ Pollut 231:854–862.  https://doi.org/10.1016/j.envpol.2017.08.086 CrossRefGoogle Scholar
  41. Naiman RJ, Bunn SE, Nilsson C, Petts GE, Pinay G, Thompson LC (2002) Legitimizing fluvial ecosystems as users of water: an overview. Environ Manage 30:455–467.  https://doi.org/10.1007/s00267-002-2734-3 CrossRefGoogle Scholar
  42. Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219.  https://doi.org/10.1016/S0048-9697(03)00139-6 CrossRefGoogle Scholar
  43. Nikinmaa M (2014) An Introduction to aquatic toxicology. Elsevier, AmsterdamGoogle Scholar
  44. Nizzetto L, Macleod M, Borgå K, Cabrerizo A, Dachs J, Guardo AD, Ghirardello D, Hansen KM, Jarvis A, Lindroth A, Ludwig B, Monteith D, Perlinger JA, Scheringer M, Schwendenmann L, Semple KT, Wick LY, Zhang G, Jones KC (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44:6526–6531.  https://doi.org/10.1021/es100178f CrossRefGoogle Scholar
  45. Nogueira DJ, Castro SC, Sá OR (2009) Utilização das brânquias de Astyanax altiparanae (Garutti & Britski, 2000) (Teleostei, Characidae) como biomarcador de poluição ambiental no reservatório UHE Furnas – MG. Rev Bras Zoociências 11:3Google Scholar
  46. Ometto JP, Cimbleris AC, Santos MA, Rosa LP, Abe D, Tundisi JG, Stech JL, Barros N, Roland F (2013) Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. Energy Policy 58:109–116.  https://doi.org/10.1016/j.enpol.2013.02.041 CrossRefGoogle Scholar
  47. Paulino MG, Benze TP, Sadauskas-Henrique H, Sakuragui MM, Fernandes JB, Fernandes MN (2014) The impact of organochlorines and metals on wild fish living in a tropical hydroelectric reservoir: bioaccumulation and histopathological biomarkers. Sci Total Environ 497:293–306.  https://doi.org/10.1016/j.scitotenv.2014.07.122 CrossRefGoogle Scholar
  48. Remaili TM, Simpson SL, Amato ED, Spadaro DA, Jarolimek CV, Jolley DF (2016) The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment. Environ Pollut 208:590–599.  https://doi.org/10.1016/j.envpol.2015.10.033 CrossRefGoogle Scholar
  49. Ribeiro CR, Leal AC (2012) Inventário do meio físico como subsídio ao planejamento ambiental: estudo aplicado na bacia hidrográfica da represa de chapéu d’uvas—zona da mata e campo das vertentes/mg. Revista Geonorte 3(6):1045–1058Google Scholar
  50. Salomons W, De Rooij NM, Kerdijk H, Bril J (1987) Sediments as a source for contaminants? Hydrobiologia 149:13–30.  https://doi.org/10.1007/BF00048643 CrossRefGoogle Scholar
  51. Santos CA, Martins BMF (2011) Uso da terra nas margens do reservatório de Furnas, sul de Minas Gerais, Brasil. Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, INPE, p 6246Google Scholar
  52. Santos IS, Garcia CA, Passos EA, Alves JP (2013) Distributions of trace metals in sediment cores from a hypertrophic reservoir in northeast Brazil. J Braz Chem Soc 24:246–255.  https://doi.org/10.5935/0103-5053.20130032 CrossRefGoogle Scholar
  53. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi river Delta, Galveston bay and Tampa bay sediment cores. Mar Environ Res 52:51–79.  https://doi.org/10.1016/S0141-1136(00)00260-9 CrossRefGoogle Scholar
  54. Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136.  https://doi.org/10.1146/annurev-environ-100809-125342 CrossRefGoogle Scholar
  55. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392.  https://doi.org/10.1016/j.aquatox.2004.03.016 CrossRefGoogle Scholar
  56. Silva IS, Abate G, Lichtig J, Masini JC (2002) Heavy metal distribution in recent sediments of the Tietê-Pinheiros river system in São Paulo state, Brazil. Appl Geochem 17:105–116.  https://doi.org/10.1016/S0883-2927(01)00086-5 CrossRefGoogle Scholar
  57. Soares MCS, Rocha MIDA, Marinho MM, Azevedo SM, Branco CW, Huszar VL (2009) Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquat Microb Ecol 57:137–149.  https://doi.org/10.3354/ame01336 CrossRefGoogle Scholar
  58. Sobek A, Wiberg K, Sundqvist KL, Haglund P, Jonsson P, Cornelissen G (2014) Coastal sediments in the Gulf of Bothnia as a source of dissolved PCDD/Fs and PCBs to water and fish. Sci Total Environ 487:463–470.  https://doi.org/10.1016/j.scitotenv.2014.04.041 CrossRefGoogle Scholar
  59. Souza Lima RN, de Melo Ribeiro CB, Barbosa CCF, Filho OCR (2016) Estudo da poluição pontual e difusa na bacia de contribuição do reservatório da usina hidrelétrica de Funil utilizando modelagem espacialmente distribuída em Sistema de Informação Geográfica. Rev Eng Sanit Ambient 21(1):139–150.  https://doi.org/10.1590/S1413-41520201600100127676 CrossRefGoogle Scholar
  60. Suen JP, Eheart JW (2006) Reservoir management to balance ecosystem and human needs: incorporating the paradigm of the ecological flow regime. Water Resour Res 4:2.  https://doi.org/10.1029/2005WR004314 CrossRefGoogle Scholar
  61. Thornton KW (1990) Sedimentary process. In: Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology: ecological perspectives. Wiley, AmsterdamGoogle Scholar
  62. Thuy HTT, Tobschall HJ, An PV (2000) Distribution of heavy metals in urban soils: a case study of Danang-Hoian Area (Vietnam). Environ Geol 39:603–610.  https://doi.org/10.1007/s002540050472 CrossRefGoogle Scholar
  63. Tundisi JG (2018) Reservoirs: New challenges for ecosystem studies and environmental management. Water Security 4:1–7.  https://doi.org/10.1016/j.wasec.2018.09.001 CrossRefGoogle Scholar
  64. Ünyayar S, Çelik A, Çekiç FÖ, Gözel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81.  https://doi.org/10.1093/mutage/gel001 CrossRefGoogle Scholar
  65. Wang C, Liu S, Zhao Q, Deng L, Dong S (2012a) Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicol Environ Saf 82:32–39.  https://doi.org/10.1016/j.ecoenv.2012.05.006 CrossRefGoogle Scholar
  66. Wang W, Delgado-Moreno L, Conkle JL, Anderson M, Amrhein C, Ye Q, Gan J (2012b) Characterization of sediment contamination patterns by hydrophobic pesticides to preserve ecosystem functions of drainage lakes. J Soils Sediments 12:1407–1418.  https://doi.org/10.1007/s11368-012-0560-7 CrossRefGoogle Scholar
  67. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170.  https://doi.org/10.1007/s00027-014-0377-0 CrossRefGoogle Scholar
  68. Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ 266:195–202.  https://doi.org/10.1016/S0048-9697(00)0074 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gabrielle R. Quadra
    • 1
    • 2
    Email author
  • Adan Lino
    • 3
  • Anna Sobek
    • 2
  • Olaf Malm
    • 3
  • Nathan Barros
    • 1
  • Yago Guida
    • 3
  • José Thomaz
    • 3
  • Raquel Mendonça
    • 1
  • Simone Cardoso
    • 1
  • Carlos Estrada
    • 1
  • Felipe Rust
    • 4
  • Fábio Roland
    • 1
  1. 1.Laboratório de Ecologia Aquática, Programa de Pós-Graduação em EcologiaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
  3. 3.Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.University of Québec at MontréalMontrealCanada

Personalised recommendations