Advertisement

Biomonitoring Organochlorine Pesticides in Didelphis virginiana from Yucatan, Mexico by GC-ECD

  • Jesús Alfredo Araujo-León
  • Gonzalo J. Mena-Rejón
  • Elsy B. Canché-Pool
  • Hugo A. Ruiz-PiñaEmail author
Article

Abstract

The aim of the present work was to apply a validated methodology for the detection of organochlorine pesticides in Didelphis virginiana (Virginia opossum) serum samples collected in Yucatan, Mexico. Recent studies performed to investigate the presence of Organochlorines (OCLs) in water, human blood and milk, and animal tissues from Yucatan have shown that the OCLs concentrations are high and can be associated with potential human health risk. Since opossum is considered an important synanthropic species in Yucatan, 40 opossum serum samples were analyzed by gas chromatography with electron capture detector. The most common OCLs found in opossum sera were lindanes, chlordanes, drines, and endosulfan. Heptachlor, heptachlor epoxide, and lindanes were found at the highest concentrations, while dichlorodiphenyl trichloroethane and its metabolites were found at the lowest concentrations in the samples. The good linearity, precision, and accuracy obtained in the evaluated parameters in the extraction and chromatographic methods support its application for the monitoring of OCLs pesticides in populations of opossums and other wild species in Yucatan.

Keywords

Didelphis virginiana Organochlorine pesticides CG-ECD Yucatan 

Notes

Funding

The funding was provided by CONACYT (Grant No. 214506/PN-2013).

References

  1. Bautista F, Palacio-Aponte G, Quintana P, Zinck JA (2011) Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 135:308–321Google Scholar
  2. Chen J, Chen L, Liu D, Zhang G (2014) Organochlorine pesticide contamination in marine organisms of Yantai coast, northern Yellow Sea of China. Environ Monit Assess 186(3):1561–1568Google Scholar
  3. El-Osmani R, Dumoulin D, Baroudi M, Bakkour H, Ouddane B (2014) Solid phases extraction of organochlorine pesticides residues in groundwater (akkar plain, North Lebanon). Int J Environ Res 8(4):903–912Google Scholar
  4. García-Besné G, Valdespino C, Rendón-von Osten J (2015) Comparison of organochlorine pesticides and PCB residues among hawksbill (Eretmochelys imbricate) and green (Chelonia mydas) turtles in the Yucatan Peninsula and their maternal transfer. Mar Pollut Bull 91(1):139148Google Scholar
  5. Garrido Frenich A, Martínez Vidal JL, Moreno Frías M, Olea-Serrano F, Olea N (2000) Quantitative determination of endocrine-disrupting polychlorinated biphenyls and organochlorinated pesticides in human serum using gas chromatography with electron-capture detection and tandem mass spectrometry. J Mass Spectrom 35(8):967–975Google Scholar
  6. Giácoma-Vallejos G, Lizarraga-Castro I, Ponce-Caballero C, González-Sánchez A, Hernández-Núñez E (2008) Presence of DDT and lindane in a karstic groundwater aquifer in Yucatan, Mexico. Groundw Monit Remediat 38:68Google Scholar
  7. Goñi F, López R, Etxeandia A, Millán E, Amiano P (2007) High throughput method for the determination of organochlorine pesticides and polychlorinated biphenyls in human serum. J Chromatogr B 852(1–2):15–21Google Scholar
  8. González AG, Herrador MA (2007) A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal Chem 26(3):227–238Google Scholar
  9. Herceg-Romanié S, Marenjak TS, Klincié D, Janicki Z, Srebocan E, Knojevié D (2012) Organochlorine compounds in red deer (Cervus elaphus L.) and fallow deer (Dama dama L.) from inland and coastal Croatia. Environ Monit Assess 184(8):5173–5180Google Scholar
  10. Kolariková K, von Tümpling W, Bartels P (2013) Bioaccumulation of HCH isomers in selected macroinvertebrates from the Elbe River: sources and environmental implications. Environ Monit Assess 185(5):4333–4346Google Scholar
  11. Kuzukiran O, Yurdakok-Dikmen B, Totan FE, Celik C, Orhan EC, Bilir EK, Kara E, Filazi A (2016) Analytical method development and validation for some persistent organic polluntants in water and sediments by gas chormatography mass spectrometry. Int J Environ Res 10(3):401–410Google Scholar
  12. Li YF, Mcdonald RW (2005) Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Sci Total Environ 342(1–3):87–106Google Scholar
  13. Lockhart JM, Siddiqui S, Loughry WJ, Bielmyer-Fraser GK (2016) Metal accumulation in wild-caught opossum. Environ Monit Assess 188(6):317Google Scholar
  14. Mansilha C, Melo A, Rebelo H, Ferreira IM, Pinho O, Domingues V, Pinho C, Gameiro P (2010) Quantification of endocrine disruptors and pesticides in water by gas chromatography-tandem mass spectrometry. Method validation using weighted linear regression schemes. J Chromatogr A 1217(43):6681–6691Google Scholar
  15. Martínez-Vidal JL, Moreno Frías M, Garrido Frenich A, Olea-Serrano F, Olea N (2002) Determination of endocrine-disrupting pesticides and polychlorinated biphenyls in human serum by GC-ECD and GC-MS-MS and evaluation of contributions to the uncertainty of the results. Anal Bion lytical Chem 372(7–8):766–775Google Scholar
  16. NACEC (2003) Chlordane no longer used in North America. North American Commission for Environmental Cooperation, MontrealGoogle Scholar
  17. NACEC (2006) The North American Regional Action Plan (NARAP) on lindane and other hexachlorocyclohexane (HCH) isomers. North American Commission for Environmental Cooperation, MontrealGoogle Scholar
  18. Polanco Rodríguez AG, Navarro Alberto JA, Solorio Sánchez J, Mena Rejón GJ, Marrufo Gómez J, Del Valls Casillas TA (2015) Contamination by organochlorine pesticides in the aquifer of the Ring of Cenotes in Yucatán, México. Water Environ J 29(1):140–150Google Scholar
  19. Polanco Rodríguez AG, Riba López MI, DelValls Casillas TA, Araujo León JA, Mahjoub O et al (2017) Monitoring of organochlorine pesticides in blood of women with uterine cervix cancer. Environ Pollut 220(Pt B):853–862Google Scholar
  20. Rodas-Ortíz JP, Ceja-Moreno V, González-Navarrete RL, Alvarado-Mejía J, Rodríguez-Hernández ME, Gold-Bouchot G (2008) Organochlorine pesticides and polychlorinated biphenyls levels in human milk from Chelem, Yucatán, México. Bull Environ Contam Toxicol 80(3):255–259Google Scholar
  21. Rodríguez AGP, López MIR, Casillas TAD, León JAA, Prusty AK, Cervera FJA (2017) Levels of persistent organic pollutants in breast milk of Maya women in Yucatan, Mexico. Environ Monit Assess 189:59Google Scholar
  22. Rodríguez AGP, López MIR, Casillas TAD, León JAA, Banik SD (2018) Impact of pesticides in karst groundwater review of recent trends in Yucatan, Mexico. Groundw Sustain Dev 7(1):20–29Google Scholar
  23. Ruiz-Piña HA, Cruz-Reyes A (2002) The opossum Didelphis virginiana as a synanthropic reservoir of Trypanosoma cruzi in Dizidzilché, Yucatán, México. Memorios Inst Oswaldo Cruz 97(5):613–620Google Scholar
  24. Ruiz-Piña HA, y Pacheco-Castro J, Lugo-Pérez JA (2013) El “zorro” de Yucatán y su relación con la población humana. In: Pacheco-Castro J, Lugo-Pérez JA, Tzuc-Canché L, Ruiz-Piña HA (eds) Estudios multidisciplinarios de las enfermedades zoonóticas y ETVs en Yucatán. Universidad Autónoma de Yucatán, Yucatán, p 285Google Scholar
  25. Ruiz-Piña HA, Rendón-von Osten J, Cuxim-Koyoc AD, Flores-Serrano RM, Reyes-Novelo EA (2016) Organochlorinated pesticides in opossums of northern Yucatan, Mexico. Toxicol Lett Spec Issue XIV Int Congr Toxicol 259S:S84Google Scholar
  26. Sajid MW, Shamoon M, Randhawa MA, Asim M, Chaudhry AS (2016) The impact of seasonal variation on organochlorine pesticide residues in buffalo and cow milk of selected dairy farmas from Faisalabab region. Environ Monit Assess 188(10):589Google Scholar
  27. Srivastava S, Narvi SS, Prasad SC (2008) Organochlorines and organophosphates in bovine milk samples in Allahabad region. Int J Environ Res 2(2):165–168Google Scholar
  28. Traverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory II. Analytical method validation and quality assurance. TrAc Trends Anal Chem 23(8):535–552Google Scholar
  29. Waliszewski SM, Caba M, Herrero-Mercado M, Saldariaga-Noreña H, Meza E, Zepeda R et al (2011) Monitoring of organochlorine pesticide residue levels in adipose tissue of Veracruz, Mexico inhabitants. Bull Environ Contam Toxicol 87(5):539–544Google Scholar
  30. Waliszewski SM, Sánchez K, Caba M, Saldariaga-Noreña H, Meza E, Zepeda R et al (2012a) Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico. Bull Environ Contam Toxicol 88(2):296–301Google Scholar
  31. Waliszewski SM, Caba M, Díaz SSR, Saldarriaga-Noreña H, Meza E, Zepeda R et al (2012b) Levels of organochlorine pesticides residues in human adipose tissue, data from Tabasco, Mexico. Bull Environ Contam Toxicol 89(5):1062–1067Google Scholar
  32. Zapata-Pérez O, Ceja-Moreno V, Roca Olmos M, Teresa Pérez M, Río-García M, Yarto M et al (2007) Ecotoxicological effects of POPs on ariidae Ariopsis felis (Linnaeus, 1866) from three coastal ecosystems in the Southern Gulf of Mexico and Yucatan Peninsula. J Environ Sci Health A 42:1513–1520Google Scholar
  33. Zuo HG, Zhu JX, Zhan CR, Tang GY, Guo P, Wei YL et al (2014) A method developed for determination of heptachlor and its metabolites from pork. Environ Monit Assess 186(4):2399–2412Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jesús Alfredo Araujo-León
    • 1
  • Gonzalo J. Mena-Rejón
    • 2
  • Elsy B. Canché-Pool
    • 3
  • Hugo A. Ruiz-Piña
    • 3
    Email author
  1. 1.Laboratorio de Cromatografía, Facultad de QuímicaUniversidad Autónoma de YucatánMéridaMéxico
  2. 2.Laboratorio de Espectrometría de Masas, Facultad de QuímicaUniversidad Autónoma de YucatánMéridaMéxico
  3. 3.Laboratorio de Zoonosis y Otras ETV’s, Centro de Investigaciones Regionales “Dr, Hideyo Noguchi”Universidad Autónoma de Yucatán. Av.MéridaMéxico

Personalised recommendations