Advertisement

Modelling Environmental Impacts of Cesium-137 Under a Hypothetical Release of Radioactive Waste

  • Yan LinEmail author
  • Raoul-Marie Couture
  • Heiko Klein
  • Martin Album Ytre-Eide
  • Jan Erik Dyve
  • Ole Christian Lind
  • Jerzy Bartnicki
  • Luca Nizzetto
  • Daniel Butterfield
  • Thorjørn Larssen
  • Brit Salbu
Article

Abstract

Waste tanks at the nuclear facility located at Sellafield, UK, represent a nuclear source which could release radionuclides to the atmosphere. A model chain which combines atmospheric transport, deposition as well as riverine transport to sea has been developed to predict the riverine activity concentrations of 137Cs. The source term was estimated to be 9 × 104 TBq of 137Cs, or 1% of the assumed total 137Cs inventory of the HAL (Highly Active Liquid) storage tanks. Air dispersion modelling predicted 137Cs deposition reaching 127 kBq m−2 at the Vikedal catchment in Western Norway. Thus, the riverine transport model predicted that the activity concentration of 137Cs in water at the river outlet could reach 9000 Bq m−3 in the aqueous phase and 1000 Bq kg−1 in solid phase at peak level. The lake and river reaches showed different transport patterns due to the buffering effects caused by dilution and slowing down of water velocity.

Keywords

Risk assessment Catchment modelling Atmospheric deposition Radionuclide transport SNAP INCA 

Notes

Acknowledgements

This work was supported by the Research Council of Norway through its Centre’s of Excellence funding scheme, Project Number 223268/F50 and Nordforsk Nordic eScience Globalisation Initiative (NeGI) Project 74306 “An open-access generic e-platform for environmental model-building at the river-basin scale”. The work has also been associated with The Research Council of Norway funded CONFIDENCE project (Project Number 291797).

Supplementary material

128_2019_2601_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1379 KB) 

References

  1. Andersson P et al (2009) Protection of the environment from ionising radiation in a regulatory context (protect): proposed numerical benchmark values. J Environ Radioact 100:1100–1108.  https://doi.org/10.1016/j.jenvrad.2009.05.010 CrossRefGoogle Scholar
  2. Baranwal V, Ofstad F, Rønning J, Watson R (2011) Mapping of Caesium Fallout from the Chernobyl Accident in the Jotunheimen Area (Report 2011.062). Geological survey of Norway (NGU), Trondheim, NorwayGoogle Scholar
  3. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Hosseini A (2016) A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. J Environ Radioact 153:141–148.  https://doi.org/10.1016/j.jenvrad.2015.12.011 CrossRefGoogle Scholar
  4. Ciffroy P, Durrieu G, Garnier JM, Cs I, Mn (2009) Probabilistic distribution coefficients (K(d)s) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co. Pu, Ra, Ru, Sb, Sr and Th—implications for uncertainty analysis of models simulating the transport of radionuclides in rivers. J Environ Radioact 100:785–794.  https://doi.org/10.1016/j.jenvrad.2008.10.019 CrossRefGoogle Scholar
  5. Fukushima T, Arai H (2014) Radiocesium contamination of lake sediments and fish following the Fukushima nuclear accident and their partition coefficient. Inland Waters 4:204–214.  https://doi.org/10.5268/iw-4.2.689 CrossRefGoogle Scholar
  6. Ganzha C, Gudkov D, Ganzha D, Klenus V, Nazarov A (2014) Physicochemical forms of Sr-90 and Cs-137 in components of Glyboke Lake ecosystem in the Chornobyl exclusion zone. J Environ Radioact 127:176–181.  https://doi.org/10.1016/j.jenvrad.2013.03.013 CrossRefGoogle Scholar
  7. Hakanson L, Sazykina TG, Kryshev II (2002) A general approach to transform a lake model for one radionuclide (radiocesium) to another (radio strontium) and critical model tests using data for four Ural lakes contaminated by the fallout from the Kyshtym accident in 1957. J Environ Radioact 60:319–350.  https://doi.org/10.1016/s0265-931x(01)00108-4 CrossRefGoogle Scholar
  8. Hesthagen T, Heggenes J, Larsen BM, Berger HM, Forseth T (1999) Effects of water chemistry and habitat on the density of young brown trout Salmo trutta in acidic streams. Water Air Soil Pollut 112:85–106.  https://doi.org/10.1023/a:1005068404832 CrossRefGoogle Scholar
  9. IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical report series no. 472 vol technical report series no. 472. International Atomic Energy Agency, ViennaGoogle Scholar
  10. Konoplev AV, Bulgakov AA, Popov VE, Popov OF, Scherbak AV, Shveikin YV, Hoffman FO (1996) Model testing using Chernobyl data.1. Wash-off of Sr-90 and Cs-137 from two experimental plots established ln the vicinity of the Chernobyl reactor. Health Phys 70:8–12.  https://doi.org/10.1097/00004032-199601000-00002 CrossRefGoogle Scholar
  11. Matsuda K et al (2015) Comparison of radioactive cesium contamination of lake water, bottom sediment, plankton, and freshwater fish among lakes of Fukushima Prefecture, Japan after the Fukushima fallout. Fish Sci 81:737–747.  https://doi.org/10.1007/s12562-015-0874-7 CrossRefGoogle Scholar
  12. Miro C, Baeza A, Madruga MJ, Perianez R (2012) Caesium-137 and Strontium-90 temporal series in the Tagus River: experimental results and a modelling study. J Environ Radioact 113:21–31.  https://doi.org/10.1016/j.jenvrad.2012.04.012 CrossRefGoogle Scholar
  13. Monte L (1997) A collective model for predicting the long-term behaviour of radionuclides in rivers. Sci Total Environ 201:17–29.  https://doi.org/10.1016/s0048-9697(97)84049-1 CrossRefGoogle Scholar
  14. Monte L (1998) Predicting the long term behaviour of Sr-90 in lacustrine systems by a collective model. Ecol Model 106:141–159.  https://doi.org/10.1016/s0304-3800(97)00189-0 CrossRefGoogle Scholar
  15. Monte L (2001) A generic model for assessing the effects of countermeasures to reduce the radionuclide contamination levels in abiotic components of fresh water systems and complex catchments. Environ Model Softw 16:669–690.  https://doi.org/10.1016/s1364-8152(01)00031-7 CrossRefGoogle Scholar
  16. Monte L, Brittain JE, Hakanson L, Smith JT, van der Perk M (2004) Review and assessment of models for predicting the migration of radionuclides from catchments. J Environ Radioact 75:83–103.  https://doi.org/10.1016/j.jenvrad.2003.11.004 CrossRefGoogle Scholar
  17. Reponen A, Jantunen M, Paatero J, Jaakkola T (1993) Plutonium Fallout in the Southern Finland after the Chernobyl accident. J Environ Radioact 21:119–130.  https://doi.org/10.1016/0265-931x(93)90049-d CrossRefGoogle Scholar
  18. Saxen RL (2007) Cs-137 in freshwater fish and lake water in Finland after the Chernobyl deposition. Boreal Environ Res 12:17–22Google Scholar
  19. Shozugawa K, Nogawa N, Matsuo M (2012) Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ Pollut 163:243–247.  https://doi.org/10.1016/j.envpol.2012.01.001 CrossRefGoogle Scholar
  20. Skuterud L, Thørring H, Ytre-Eide MA (2014) Use of total 137Cs deposition to predict contamination in feed vegetation and reindeer 25 years after Chernobyl. Paper presented at the ICRER 2014 Third International Conference on Radioecology and Environmental Radioactivity, Barcelona, SpainGoogle Scholar
  21. Thørring H, Ytre-Eide MA, Liland A (2010) Consequences in Norway after a hypothetical accident at Sellafield: predicted impacts on the environment. Norwegian Radiation Protection Agency, ØsteråsGoogle Scholar
  22. USEPA (1999) Understanding variation in partition coefficient, Kd values. Volume II: review of Geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  23. Vetikko V, Saxen R (2010) Application of the ERICA Assessment tool to freshwater biota in Finland. J Environ Radioact 101:82–87.  https://doi.org/10.1016/j.jenvrad.2009.09.001 CrossRefGoogle Scholar
  24. Webb GAM, Anderson RW, Gaffney MJS (2006) Classification of events with an off-site radiological impact at the Sellafield site between 1950 and 2000, using the International Nuclear Event Scale. J Radiol Prot 26:33–49.  https://doi.org/10.1088/0952-4746/26/1/002 CrossRefGoogle Scholar
  25. Whitehead PG, Wilson EJ, Butterfield D (1998a) A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part I—model structure and process equations. Sci Total Environ 210:547–558.  https://doi.org/10.1016/s0048-9697(98)00037-0 CrossRefGoogle Scholar
  26. Whitehead PG, Wilson EJ, Butterfield D, Seed K (1998b) A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): part II—application to large river basins in south Wales and eastern England. Sci Total Environ 210:559–583.  https://doi.org/10.1016/s0048-9697(98)00038-2 CrossRefGoogle Scholar
  27. Ytre-Eide M et al (2009) Consequences in Norway of a hypothetical accident at Sellafield: potential release—transport and fallout. Norwegian Nuclear Protection Agency, ØsteråsGoogle Scholar
  28. Zheleznyak MJ, Demchenko RI, Khursin SL, Kuzmenko YI, Tkalich PV, Vitiuk NY (1992) Mathematical-modeling of radionuclide dispersion in the Pripyat-Dnieper aquatic system after the Chernobyl accident. Sci Total Environ 112:89–114.  https://doi.org/10.1016/0048-9697(92)90241-j CrossRefGoogle Scholar
  29. Zheleznyak M, Shepeleva T, Sizonenko V, Mezhueva I (1997) Simulation of countermeasures to diminish radionuclide fluxes from the Chernobyl zone via aquatic pathways. Radiat Prot Dosim 73:181–186CrossRefGoogle Scholar
  30. Zheng J et al (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep 2.  https://doi.org/10.1038/srep00304 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yan Lin
    • 1
    • 5
    Email author
  • Raoul-Marie Couture
    • 1
    • 6
  • Heiko Klein
    • 2
    • 5
  • Martin Album Ytre-Eide
    • 3
    • 5
  • Jan Erik Dyve
    • 3
    • 5
  • Ole Christian Lind
    • 4
    • 5
  • Jerzy Bartnicki
    • 2
    • 5
  • Luca Nizzetto
    • 1
  • Daniel Butterfield
    • 1
  • Thorjørn Larssen
    • 1
  • Brit Salbu
    • 4
    • 5
  1. 1.Norwegian Institute for Water ResearchOsloNorway
  2. 2.Norwegian Meteorological InstituteOsloNorway
  3. 3.Norwegian Radiation Protection AuthorityØsteråsNorway
  4. 4.Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life Sciences NMBUÅsNorway
  5. 5.Centre for Environmental Radioactivity (Centre of Excellence)Norwegian University of Life Sciences NMBUÅsNorway
  6. 6.Department of ChemistryUniversité LavalQuebecCanada

Personalised recommendations