The Toxicological Effects of Mercury Exposure in Marine Fish

  • Na ZhengEmail author
  • Sujing Wang
  • Wu Dong
  • Xiuyi Hua
  • Yunyang Li
  • Xue Song
  • Qingwen Chu
  • Shengnan Hou
  • Yang Li
Focused Review


Since the Minamata incident in Japan, the public have become increasingly aware of the negative health effects caused by mercury pollution in the ocean. Consequently, there has been significant interest in the health of humans eating fish exposed to mercury (Hg). However, the toxicity of mercury to the marine fish themselves has received far less attention. In this review, we summarize mercury accumulation in marine fish and the toxicological effects of mercury exposure. Results showed that the bioaccumulation of mercury in marine fish was highly variable, and its concentration was affected by the specific physiological and ecological characteristics of different fish species. Mercury exposure can produce teratogenic, neurotoxic effects, and reproductive toxicity. These effects can then cause harm to cells, tissues, proteins and genes, and ultimately, the survival, growth, and behavior of marine fish. Future studies should afford more attention to the toxicological effect of mercury exposure upon marine fish.


Mercury Marine fish Toxicity 



We would like to acknowledge the support of the National Natural Science Foundation of China (No. 41722110 and No. 41571474), the Jilin Province Natural Science Foundation of China (No. 20170101203JC).


  1. Anual ZF, Maher W, Krikowa F, Hakim L, Ahmad NI, Foster S (2018) Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from west peninsular Malaysia. Microchem J 140:214–221CrossRefGoogle Scholar
  2. Avyle MJ, Garvick SJ, Blazer VS, Hamilton SJ, Brumbaugh WG (1989) Skeletal deformities in smallmouth bass, Micropterus dolomieui, from Southern Appalachian Reservoirs. Arch Environ Contam Toxicol 18:688–696CrossRefGoogle Scholar
  3. Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilherminol L (2018a) Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol 195:49–57CrossRefGoogle Scholar
  4. Barboza LGA, Vieira LR, Branco V, Carvalho C, Guilherminol L (2018b) Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Sci Rep 8:15655CrossRefGoogle Scholar
  5. Berg K, Puntervoll P, Valdersnes S, Goksøyr A (2010) Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquat Toxicol 100:51–65CrossRefGoogle Scholar
  6. Brunelli E, Mauceri A, Fasulo S, Giannetto A, Maisano M, Tripepi S (2010) Localization of aquaporin 1 and 3 in the gills of the rainbow wrasse Coris julis. Acta Histochem 112:251–258CrossRefGoogle Scholar
  7. Budtz-Jorgensen E, Keiding N, Grandjean P, Weihe P (2002) Estimation of health effects of prenatal methylmercury exposure using structural equation models. Environ Health. Google Scholar
  8. Cabañero AI, Madrid Y, Cámara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526(1):51–61CrossRefGoogle Scholar
  9. Cappello T, Pereira P, Maisano M, Mauceri A, Pacheco M, Fasulo S (2016) Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by 1H NMR-based metabolomics. Environ Pollut 219:139–148CrossRefGoogle Scholar
  10. Chen QL, Sun YL, Liu ZH, Li YW (2017) Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). Chemosphere 188:1–9CrossRefGoogle Scholar
  11. Chouvelon T, Cresson P, Bouchoucha M, Brach-Papa C, Bustamante P, Crochet S, Marco-Mirallea F, Thomas B, Knoery J (2018) Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: a marine ecosystem-comparative study. Environ Pollut 233:844–854CrossRefGoogle Scholar
  12. Choy CA, Popp BN, Kaneko JJ, Drazen JC (2009) The influence of depth on mercury levels in pelagic fishes and their prey. Proc Natl Acad Sci USA 106(33):13865–13869CrossRefGoogle Scholar
  13. Dang Y, Giesy JP, Wang JH, Liu CS (2015) Dose-dependent compensation responses of the hypothalamic-pituitary-gonadal-liver axis of zebrafish exposed to the fungicide prochloraz. Aquat Toxicol 160:69–75CrossRefGoogle Scholar
  14. Djinovic-Stojanovic J, Nikolic D, Vranic D, Stefanovic S, Milijasevic M, Babic J, Jankovic S (2015) Distribution of mercury in three marine fish species. Procedia Food Sci 5:65–68CrossRefGoogle Scholar
  15. Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58CrossRefGoogle Scholar
  16. Fugelli K, Thoroed SM (1990) Taurine and volume regulation in fish cells. Prog Clin Biol Res 351:481–488Google Scholar
  17. Glover JB, Domino ME, Altman KC, Dillman JW, Castleberry WS, Eidson JP, Mattocks M (2010) Mercury in South Carolina Fishes, USA. Ecotoxicology 19(4):781–795CrossRefGoogle Scholar
  18. Gonzalez-Raymat H, Liu GL, Liriano C, Li YB, Yin YG, Shi JB, Jiang GB, Cai Y (2017) Elemental mercury: its unique properties affect its behavior and fate in the environment. Environ Pollut 229:69–86CrossRefGoogle Scholar
  19. Harding G, Dalziel J, Vass P (2018) Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine. PLoS One 13(7):e0197220CrossRefGoogle Scholar
  20. Harley J, Lieske C, Bhojwani S, Castellini JM, Lopez JA, O’Hara TM (2015) Mercury and methylmercury distribution in tissues of sculpins from the Bering Sea. Polar Bio 38(9):1535–1543CrossRefGoogle Scholar
  21. Huang W, Gao LA, Shan XJ, Lin LS, Dou SZ (2011) Toxicity testing of waterborne mercury with red sea bream (Pagrus major) embryos and larvae. Bull Environ Contam Toxicol 86(4):398–405CrossRefGoogle Scholar
  22. Jeevanaraj P, Hashim Z, Elias SM, Aris AZ (2016) Mercury accumulation in marine fish most favoured by Malaysian women, the predictors and the potential health risk. Environ Sci Pollut Res 23:23714–23729CrossRefGoogle Scholar
  23. Keyvanshokooh S, Vaziri B, Gharaei A, Mahboudi F, Esmaili-Sari A, Shahriari-Moghadam M (2009) Proteome modifications of juvenile beluga (Huso huso) brain as an effect of dietary methylmercury. Comp Biochem Physiol D-Genomics Proteomics 4(4):243–248CrossRefGoogle Scholar
  24. Lamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, Lam PJ, Heimburger LE, Rijkenberg MJA, Saito MA (2014) A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512(7512):65–69CrossRefGoogle Scholar
  25. Le Croizier G, Schaal G, Point D, Le Loc’h F, Machu E, Fall M, Munaron JM, Boye A, Walter P, Lae R (2019) Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. Sci Total Environ 650:2129–2140CrossRefGoogle Scholar
  26. Lehnherr I, St Louis VL, Hintelmann H, Kirk JL (2011) Methylation of inorganic mercury in polar marine waters. Nat Geosci 4(5):298–302CrossRefGoogle Scholar
  27. Li P, Feng XB, Yuan XB, Chan HM, Qiu GL, Sun GX, Zhu YG (2012) Rice consumption contributes to low level methylmercury exposure in southern China. Environ Int 49:18–23CrossRefGoogle Scholar
  28. Liao CY, Fu JJ, Shi JB, Zhou QF, Yuan CG, Jiang GB (2006) Methylmercury accumulation, histopathology effects, and cholinesterase activity alterations in medaka (Oryzias latipes) following sublethal exposure to methylmercury chloride. Environ Toxicol Pharmacol 22(2):225–233CrossRefGoogle Scholar
  29. Liu Q, Kingler RH, Wimpee B, Dellinger M, King-Heiden T, Grzybowski J, Gerstenberger SL, Weber DN, Carvan MJ (2016) Maternal methylmercury from a wild-caught walleye diet induces developmental abnormalities in zebrafish. Reprod Toxicol 65:272–282CrossRefGoogle Scholar
  30. Liu YY, Buchanan S, Anderson HA, Xiao ZW, Persky V, Turyk ME (2018) Association of methylmercury intake from seafood consumption and blood mercury level among the Asian and Non-Asian populations in the United States. Environ Res 160:212–222CrossRefGoogle Scholar
  31. Matulik AG, Kerstetter DW, Hammerschlag N, Divoll T, Hammerschmidt CR, Evers DC (2017) Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar Pollut Bull 116(1–2):357CrossRefGoogle Scholar
  32. Maulvault AL, Custodio A, Anacleto P, Reploho T, Pousao P, Nunes ML, Diniz M, Rosa R, Marques A (2016) Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment. Environ Res 149:77–85CrossRefGoogle Scholar
  33. Meador JP, Robisch PA, Clark RC, Ernrst DW (1998) Elements in fish and sediment from the Pacific Coast of the United States: results from the national benthic surveillance project. Mar Pollut Bull 37(1–2):56–66CrossRefGoogle Scholar
  34. Mora-Zamorano FX, Klingler R, Murphy CA, Basu N, Head J, Carvan MJ (2016) Parental whole life cycle exposure to dietary methylmercury in Zebrafish (Danio rerio) affects the behavior of offspring. Environ Sci Technol 50(9):4808–4816CrossRefGoogle Scholar
  35. Mora-Zamorano FX, Klingler R, Basu N, Head J, Murphy CA, Binkowski FP, Larson JK, Carvan MJ (2017) Developmental methylmercury exposure affects swimming behavior and foraging efficiency of Yellow Perch (Perca flavescens) larvae. Acs Omega 2(8):4870–4877CrossRefGoogle Scholar
  36. Morcillo P, Esteban MA, Cuesta A (2016a) Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere 144:225–233CrossRefGoogle Scholar
  37. Morcillo P, Romero D, Meseguer J, Esteban MA, Cuesta A (2016b) Cytotoxicity and alterations at transcriptional level caused by metals on fish erythrocytes in vitro. Environ Sci Pollut Res 23:12312–12322CrossRefGoogle Scholar
  38. Morcillo P, Meseguer J, Esteban MA, Cuesta A (2016c) In vitro effects of metals on isolated head-kidney and blood leucocytes of the teleost fish Sparus aurata L. and Dicentrarchus labrax L. Fish Shellfish Immunol 54:77–85CrossRefGoogle Scholar
  39. O’Bryhim JR, Adams DH, Spaet JLY, Mills G, Lance SL (2017) Relationships of mercury concentrations across tissue types, muscle regions and fins for two shark species. Environ Pollut 223:323–333CrossRefGoogle Scholar
  40. Olson KR, Fromm PO, Frantz WL (1973) Ultrastructural changes of rainbow trout gills exposed to methyl mercury or mercuric chloride. Fed Proc 32:261Google Scholar
  41. Olsvik PA, Brattas M, Lie KK, Goksoyr A (2011) Transcriptional responses in juvenile Atlantic cod (Gadus morhua) after exposure to mercury-contaminated sediments obtained near the wreck of the German WW2 submarine U-864, and from Bergen Harbor, Western Norway. Chemosphere 83:552–563CrossRefGoogle Scholar
  42. Pereira P, Puga S, Cardoso V, Pinto-Ribeiro F, Raimundo J, Barata M, Pousão-Ferreira P, Pacheco M, Almeida A (2016) Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (White seabream—Diplodus sargus). Aquat Toxicol 170:400–412CrossRefGoogle Scholar
  43. Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ Sci Technol 41:125–131CrossRefGoogle Scholar
  44. Schaefer JK, Szczuka A, Morel FMM (2014) Effect of divalent metals on Hg(II) uptake and methylation by bacteria. Environ Sci Technol 48:3007–3013CrossRefGoogle Scholar
  45. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63CrossRefGoogle Scholar
  46. Senger MR, Rosemberg DB, Seibt KJ, Dias RD, Bogo MR, Bonan CD (2010) Influence of mercury chloride on adenosine deaminase activity and gene expression in zebrafish (Danio rerio) brain. Neurotoxicology 31(3):291–296CrossRefGoogle Scholar
  47. Sfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM (2015) Effect of heavy metals on fish larvae deformities: a review. Environ Res 137:246–255CrossRefGoogle Scholar
  48. Sinkus W, Shervette V, Ballenger J, Reed LA, Plante C, White B (2016) Mercury bioaccumulation in offshore reef fishes from waters of the Southeastern USA. Environ Pollut 228:222–233CrossRefGoogle Scholar
  49. Taylor DL, Kutil NJ, Malek AJ, Collie JS (2014) Mercury bioaccumulation in cartilaginous fishes from Southern New England coastal waters: contamination from a trophic ecology and human health perspective. Mar Environ Res 99(4):20–33CrossRefGoogle Scholar
  50. Vega-Sanchez B, Ortega-Garcia S, Ruelas-Inzunza J, Frias-Espericueta M, Escobar-Sanchez O, Guzman-Rendon J (2017) Mercury in the Blue Marlin (Makaira nigricans) from the southern gulf of California: tissue distribution and inter-annual variation (2005–2012). Bull Environ Contam Toxicol 98(2):156–161CrossRefGoogle Scholar
  51. Wang MH, Wang YY, Zhang L, Wang J, Hong HS, Wang DZ (2013) Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). Aquat Toxicol 130–131:123–131CrossRefGoogle Scholar
  52. Wang YY, Wang DZ, Lin L, Wang MH (2015) Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury. Chemosphere 119:1126–1133CrossRefGoogle Scholar
  53. Webber HM, Haines TA (2003) Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas). Environ Toxicol Chem 22:1556–1561CrossRefGoogle Scholar
  54. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–625CrossRefGoogle Scholar
  55. Wu FZ, Huang W, Liu Q, Xu XQ, Zeng JN, Cao L, Hu J, Xu XD, Gao YX, Jia SH (2018) Responses of antioxidant defense and immune gene expression in early life stages of large yellow croaker (Pseudosciaena crocea) under methyl mercury exposure. Front Physiol 9:1436CrossRefGoogle Scholar
  56. Zaza S, de Balogh K, Palmery M, Alberto A, Stacchini P, Elena VR (2015) Human exposure in Italy to lead, cadmium and mercury through fish and seafood product consumption from Eastern Central Atlantic Fishing Area. J Food Compos Anal 40:148–153CrossRefGoogle Scholar
  57. Zhang QF, Li YW, Liu ZH, Chen QL (2016) Reproductive toxicity of inorganic mercury exposure in adult zebrafish: histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. Aquat Toxicol 177:417–424CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Na Zheng
    • 1
    • 2
    Email author
  • Sujing Wang
    • 1
  • Wu Dong
    • 3
  • Xiuyi Hua
    • 1
  • Yunyang Li
    • 2
  • Xue Song
    • 2
  • Qingwen Chu
    • 3
  • Shengnan Hou
    • 2
    • 4
  • Yang Li
    • 1
  1. 1.Key Laboratory of Groundwater Resources and Environment, College of Environment and ResourcesJilin UniversityChangchunChina
  2. 2.Northeast Institute of Geography and Agricultural EcologyChinese Academy of SciencesChangchunChina
  3. 3.Inner Mongolia Key Laboratory Toxinscant Monitoring and Toxicology, College of Animal Science and TechnologyInner Mongolia University for NationalitiesTongliaoChina
  4. 4.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations