Advertisement

Zinc Oxide Nanoparticles Induced Oxidative Stress and Changes in the Photosynthetic Apparatus in Fenugreek (Trigonella foenum graecum L.)

  • Hajer Chemingui
  • Moez SmiriEmail author
  • Takwa Missaoui
  • Amor Hafiane
Article

Abstract

The aim of this work was to study the toxicity of nanosheet zinc oxide nanoparticle with the size of 45 nm. The penetration of nanoparticles at an exposure by a localized spray does not make it possible to understand the mechanism of transport and bioavailability of the nanoparticles. In contrast, nanoparticles penetrated, via the roots, as a function of their diameter, the smaller ones having caused leaf stress (by translocation) at low concentrations. So that the choice of method of root application. Plants treated with 50 mg L−1 of ZnO-NPs presented disturbance in leaf due to changes in chlorophyll’s biosynthesis. The highest value of the photosynthetic pigments was recorded at 5 mg L−1 of ZnO-NPs. However, the treatment with 50 mg L−1 of ZnO-NPs caused a decrease in the levels of chlorophyll a and b. Moreover, ZnO-NPs leaves significantly enhanced antioxidant enzymes activities.

Keyword

Co-precipitation Zinc oxide nanoparticles Photosynthetic Oxidative stress Trigonella foenum graecum

Notes

Acknowledgements

Financial support for this work was received from the Tunisian Ministry of Higher Education, Scientific Research, and Technology (LR15CERTE04).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. Akir S, Barras A, Coffinier Y et al (2016) Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B. Ceram Int 42:10259–10265CrossRefGoogle Scholar
  2. Battke F, Leopold K, Maier M et al (2008) Palladium exposure of barley: uptake and effects. Plant Biol 10:272–276.  https://doi.org/10.1111/j.1438-8677.2007.00017.x CrossRefGoogle Scholar
  3. Chen C, Yu B, Liu P et al (2011) Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res 12:420–425.  https://doi.org/10.1016/j.cej.2008.07.047 Google Scholar
  4. Çimrin KM, Türkmen Ö, Turan M, Tuncer B (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr J Biotechnol 9:5845–5851Google Scholar
  5. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589CrossRefGoogle Scholar
  6. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332CrossRefGoogle Scholar
  7. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232.  https://doi.org/10.1038/cr.2013.114 CrossRefGoogle Scholar
  8. Hassan F, Miran MS, Simol HA et al (2015) Synthesis of ZnO nanoparticle by a hybrid electrochemical-thermal method: influence of calcination temperature. Bangladesh J Sci Ind Res 50(1):21–28CrossRefGoogle Scholar
  9. Hazman M (2015) Increased tolerance to salt stress in OPDA-deficient rice allene oxide cyclase mutants is linked to an increased ROS-scavenging activity. J Exp Bot 66:3339–3352.  https://doi.org/10.1093/jxb/erv142 CrossRefGoogle Scholar
  10. Hoagland DR, Arnon DI, Hause B, Eiche E et al (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stat 347:1-32Google Scholar
  11. Kayani ZN, Saleemi F, Batool I (2015) Effect of calcination temperature on the properties of ZnO nanoparticles. Appl Phys A 119:713–720CrossRefGoogle Scholar
  12. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227CrossRefGoogle Scholar
  13. Koller E (2004) Traitement des pollutions industrielles. Paris 59–90,Google Scholar
  14. Larue C, Khodja H, Herlin-Boime N et al (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser 304Google Scholar
  15. Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefGoogle Scholar
  16. Lewicka ZA, Yu WW, Oliva BL et al (2013) Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J Photochem Photobiol A Chem 263:24–33CrossRefGoogle Scholar
  17. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585.  https://doi.org/10.1021/es800422x CrossRefGoogle Scholar
  18. Mazhar R, Ilyas N, Saeed M et al (2016) Biocontrol and salinity tolerance potential of Azospirillum lipoferum and its inoculation effect in wheat crop. Int J Agric Biol 18:494–500.  https://doi.org/10.17957/IJAB/15.0115 CrossRefGoogle Scholar
  19. Missaoui T, Smiri M, Chemingui H, Hafian A (2017) Effects of nanosized titanium dioxide on the photosynthetic metabolism of fenugreek (Trigonella foenum-graecum L.). C R Biol 340:1–13CrossRefGoogle Scholar
  20. Missaoui T, Smiri M, Chemingui H et al (2018) Regulation of mitochondrial and cytosol antioxidant systems of Fenugreek (Trigonella foenum graecum L.) exposed to nanosized titanium dioxide. Bull Environ Contam Toxicol 101:326CrossRefGoogle Scholar
  21. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165CrossRefGoogle Scholar
  22. Moulahi A, Sediri F, Gharbi N (2012) Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties. Mater Res Bull 47:667–671CrossRefGoogle Scholar
  23. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25CrossRefGoogle Scholar
  24. Reid JSG (1971) Reserve carbohydrate metabolism in germinating seeds of Trigonella foenum-graecum L. (Leguminosae). Planta 100:131–142CrossRefGoogle Scholar
  25. Rico C, Hong J, Morales MI, Zhao L, Barrios AC et al (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:11–33Google Scholar
  26. Sageer EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sediments 9:46–53.  https://doi.org/10.1007/s11368-008-0034-0 CrossRefGoogle Scholar
  27. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365Google Scholar
  28. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915.  https://doi.org/10.1016/j.chemosphere.2013.05.044 CrossRefGoogle Scholar
  29. Siani NG, Fallah S, Rostamnejadi A (2016) Evaluation of Iinhibition effect of ZnO nanoparticles concentration regarding seed germination and seedling growth of Fenugreek (Trigonella foenum-graecum L.). J Med Plants By-prod 2:235–243Google Scholar
  30. Suliman AE (2007) Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells Sol. Energy Mat Sol Cells 91:1658CrossRefGoogle Scholar
  31. Wang RC, Tsai CC (2009) Efficient synthesis of ZnO nanoparticles, nanowalls, and nanowires by thermal decomposition of zinc acetate at a low temperature. Appl Phys A 94:241–245.  https://doi.org/10.1007/s00339-008-4755-0 CrossRefGoogle Scholar
  32. Wu L, Wu Y, Lu W (2005) Preparation of ZnO nanorods and optical Characterizations. Physica E 28:76–82, 2005CrossRefGoogle Scholar
  33. Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645CrossRefGoogle Scholar
  34. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91CrossRefGoogle Scholar
  35. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Curr Opin Biotechnol 19:153–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hajer Chemingui
    • 1
    • 3
  • Moez Smiri
    • 1
    • 2
    Email author
  • Takwa Missaoui
    • 1
  • Amor Hafiane
    • 1
  1. 1.Laboratory of Water, Membranes and Environment Biotechnology (LEMBE)Technopole of Borj Cedria (CERTE)Hammam-LifTunisia
  2. 2.Department of BiologyUniversity of Carthage, Higher Institute of Environmental Science and Technology of Borj CedriaHammam‑LifTunisia
  3. 3.University of Tunis El ManarRomenaTunisia

Personalised recommendations