Advertisement

Assessment of Organochlorine Pesticides in Phreatic Aquifer of Pampean Region, Argentina

  • Sebastián Iván GrondonaEmail author
  • Mariana Gonzalez
  • Daniel Emilio Martínez
  • Héctor Enrique Massone
  • Karina Silvia Beatriz Miglioranza
Article

Abstract

This work evaluates the factors affecting the presence of organochlorine pesticides in Pampeano aquifer in the Quequén Grande River watershed, Buenos Aires Province, Argentina. Eighteen sampling sites were selected in order to have representatives of different type of wells and types of soil. Among the analyzed compounds, endosulfan showed the highest concentrations (4.75 ng l− 1 mean), which could be related to use in the recent past. Others important pesticides groups detected were HCHs (1.1 ng l− 1 mean) and heptachlors (2.17 ng l− 1mean). The analysis of the results show that the thickness of the unsaturated zone is the main factor related to the concentrations of pesticides and there were no differences according to wells or soil types. Although agricultural use of most OCPs has been banned in Argentina from more than 30 years ago, their residues are still detected in groundwater of the region, indicating their high persistence.

Keywords

Groundwater Organochlorines pesticides Quequén Grande River watershed 

Notes

Acknowledgements

This study was supported with grants from Universidad Nacional de Mar del Plata, ANPCyT (PICT-07/390 and PICT-11/0768) and is part of the PhD thesis of the first author, who thanks to CONICET and FONCyT. We also thank Eleonor Tietze for assistance in statistical analysis of the results.

References

  1. Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New ZealandGoogle Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical models. PRIMER-E Ltd, PlymouthGoogle Scholar
  3. Argentinian Food Code (2012) Law 18284, chapter XII, Hidric beverages, water and sparkling water, arts. 982-1079. http://www.anmat.gov.ar/alimentos/codigoa/CAPITULO_XII.pdf. Accessed 13 Novembre 2018
  4. Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environm 123:247–260CrossRefGoogle Scholar
  5. ATSDR: Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov. Accessed 26 April 2016
  6. Auge M (2004) Regiones hidrogeologicas. Republica Argentina y provincia de Buenos Aires, Mendoza y Santa Fe. http://www.alhsud.com/public/ebooks/reghidroarg.pdf. 26 April 2017
  7. Burkhardt M, Kasteel R, Vanderborght J, Vereecken H (2007) Field study on colloid transport using fluorescent microspheres. Eur J Soil Sci 59(1):82–93CrossRefGoogle Scholar
  8. Carazo-Rojas E, Peréz-Rojas G, Pérez-Villanueva M, Chinchilla-Soto C, Chin-Pampillo JS, Aguilar-Mora P, Alpízar-Marín M, Masís-Mora M, Rodríguez-Rodríguez CE, Vryzas Z (2018) Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ Pollut 241:800–809CrossRefGoogle Scholar
  9. Clarke KR, Warwick RM (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278CrossRefGoogle Scholar
  10. El Bakouri H, Ouassini A, Morillo Aguado J, Usero García J (2007) Endosulfan sulfate mobility in soil columns and pesticide pollution of groundwater in Northwest Morocco. Water Environ Res 79(13):2578–2584CrossRefGoogle Scholar
  11. Elliott JA, Cessna AJ, Nicholaichuk W, Tollefson LC (2000) Leaching rates and referential flow of selected herbicides through tilled and untilled soil. J Environ Qual 29:1650–1656CrossRefGoogle Scholar
  12. Flury M (1996) Experimental evidence of transport of pesticides through field soils—a review. J Environ Qual 25:25–45CrossRefGoogle Scholar
  13. Gonzalez M, Miglioranza KSB, Shimabukuro V, Quiroz M, Martinez DE, Aizpun JE, Moreno VJ (2012) Surface and groundwater pollution by organochlorine compounds in a typical soybean system from the south pampa, Argentina. Environ Earth Sci 65:481–491CrossRefGoogle Scholar
  14. Gonzalez M, Miglioranza KSB, Grondona SI, Silva Barni MF, Martinez DE, Peña A (2013) Organic pollutant levels in an agricultural watershed: the importance of analyzing multiple matrices for assessing streamwater pollution. Environ Sci Process Impacts 15:739–740CrossRefGoogle Scholar
  15. Grondona SI, Gonzalez M, Martínez DE, Massone HE, Miglioranza KSB (2014) Endosulfan leaching from Typic Argiudolls in soybean tillage areas and groundwater pollution implications. Sci Total Environ 484:146–153CrossRefGoogle Scholar
  16. Gustafson DI (1989) Grounwater Ubicuity Score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339–357CrossRefGoogle Scholar
  17. INTA-Castelar (1989) Descripción de Cartas de Suelo Prov. Bs. As. Esc.1:500.000Google Scholar
  18. Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546CrossRefGoogle Scholar
  19. Johnson DC, Selim HM, Ma L, Southwick LM, Willis GH (1995) Movement of atrazine and nitrate in sharkey clay soil. Evidence of preferential flow. Report no. 846. Louisiana State University Agricultural Center, Louisiana Agricultural Experimental Station, Baton RougeGoogle Scholar
  20. Johnson AC, Besien TJ, Bhardwaj CL, Dixon A, Gooddy DC, Haria AH, White C (2001) Penetration of herbicides to groundwater in an unconfined chalk aquifer following normal soil applications. J Contam Hydrol 53(1–2):101–117CrossRefGoogle Scholar
  21. Kataoka R, Takagi K (2013) Biodegradability and biodegradation pathways of endosulfan and endosulfan sulphate. Appl Microbiol Biotechnol 97:3285–3292CrossRefGoogle Scholar
  22. Keith LH, Crumett W, Wentler G (1983) Principles of environmental analysis. Anal Chem 55:2210–2218CrossRefGoogle Scholar
  23. Kruse E, Laurencena P, Deluchi M, Varela L (1997) Caracterización de la red de drenaje para la evacuación hidrológica en la región interserrana (provincia de Buenos Aires). I Congreso Argentino de Hidrogeología. Bahía Blanca, Argentina, Actas I, pp 133–145Google Scholar
  24. Lari SZ, Khan NA, Gandhi KN, Meshram TS, Thacker NP (2014) Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. J Environ Health Sci Eng 12:1–7CrossRefGoogle Scholar
  25. Liu WX, He W, Qin N, Kong XZ, He QS, Ouyang HL, Xu FL (2012) Residues, distributions, sources, and ecological risks of OCPs in the water from Lake Chaohu. China TSWJ 1:897697Google Scholar
  26. Man Y, Chow K, Wang H, Lau K, Sun X, Wu S (2011) Health risk assessment of organochlorine pesticides with emphasis on DDTs and HCHs in abandoned agricultural soils. J Environ Monitor 13:2250–2259CrossRefGoogle Scholar
  27. Massone H, Martínez DE, Cionchi J, Bocanegra EM (1998) Suburban areas in developing countries and its relation with groundwater pollution. Mar del Plata (Argentina) as a case study. Environ Manag 22(2):245–254CrossRefGoogle Scholar
  28. Miglioranza K, Aizpun J, Moreno V (2003) Dynamics of organochlorine pesticides in soils from a southeastern region of Argentina. Environ Toxicol Chem 22:712–717CrossRefGoogle Scholar
  29. Moncrieff JE, Bentley LR, Calderon Palma H (2008) Investigating pesticide transport in the Leon-Chinandegea aquifer, Nicaragua. Hydrogeol J 16:183–197CrossRefGoogle Scholar
  30. Ouyang HL, He W, Qin N, Kong XZ, Liu WX, He QS, Wang QM, Jiang YJ, Yang C, Yang B, Xu FL (2012) Levels, temporal-spatial variations, and sources of organochlorine pesticides in ambient air of Lake Chaohu, China. TSWJ 20(4):2020–2032Google Scholar
  31. Papadopoulou-Mourkidou E, Karpouzas DG, Patsias J, Kotopoulou A, Milothridou A, Kintzikoglou K, Vlachou P (2004) The potential of pesticides to contaminate the groundwater resources of the Axios river basin in Macedonia, Northern Greece: Part I. Monitoring study in the north part of the basin. Sci Total Environ 321:127–146CrossRefGoogle Scholar
  32. Perret J, Prasher SO, Kantzas A, Langford C (1998) Characterization of macropore morphology in a sandy loam soil using X-ray computer assisted tomography and geostatistical analysis. Can Water Res J 23(2):143–165CrossRefGoogle Scholar
  33. PPDB: Pesticide Properties Data Base. https://sitem.herts.ac.uk/aeru/footprint/es/. Accessed 26 April 2016
  34. Quiroz Londoño OM, Martinez DE, Massone HE (2012) Evaluación comparativa de métodos de cálculo de recarga en ambientes de llanura. La llanura interserrana bonaerense (Argentina), como caso de estudio. Dyna 79(171):239–247Google Scholar
  35. Rao PSC, Mansell RS, Baldwin LB, Laurent MF (1983) Pesticides and their behavior in soil and water. Soil Science Fact Sheet, Institute of Food Agricultural Sciences, University of Florida, USAGoogle Scholar
  36. Rumynin VG (2011) Water movement and solute transport in unsaturated porous media in subsurface solute transport models and case histories. Theory Appl Transp Porous Media 25:77–119CrossRefGoogle Scholar
  37. Sang S, Petrovic S, Cuddeford V (1999) Lindane- a review of toxicity and environmental fate. World Wildlife Fund Canada, Toronto, 65 ppGoogle Scholar
  38. Sarandón SJ (2002) La agricultura como actividad transformadora del ambiente. El Impacto de la Agricultura intensiva de la Revolución Verde. In: Sarandon SJ (ed) Agroecologia: El camino hacia una agricultura sustentable. Ediciones Científicas Americanas, La Plata, pp 23–48Google Scholar
  39. Stephens DB (1996) Vadose zone hydrology. Lewis Publishers, New YorkGoogle Scholar
  40. Vryzas Z, Papadakis E, Vassiliou G, Papadopoulou-Mourkidou E (2012a) Occurrence of pesticides in transboundary aquifers of Northeastern Greece. Sci Total Environ 441:41–48CrossRefGoogle Scholar
  41. Vryzas Z, Papadakis EN, Papadopoulou-Mourkidou E (2012b) Leaching of Br, metolachlor, alachlor, atrazine, deethylatrazine and deisopropylatrazine in clayey vadoze zone: a field scale experiment in north-east Greece. Water Res 46:1979–1989CrossRefGoogle Scholar
  42. Weinzettel P, Usunoff E (2001) Determinación del flujo por macroporos en suelos argiudoles en la cuenca del arroyo Azul, Argentina. In: Medina A, Carrera J (eds) Las caras del agua subterránea. IGME, Barcelona, pp 221–231Google Scholar
  43. Worrall F, Kolpin DW (2004) Aquifer vulnerability to pesticide pollution-Combining soil, land-use and aquifer properties with molecular descriptors. J Hydrol 293:191–204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sebastián Iván Grondona
    • 1
    • 2
    • 3
    Email author
  • Mariana Gonzalez
    • 2
    • 3
  • Daniel Emilio Martínez
    • 1
    • 3
  • Héctor Enrique Massone
    • 1
  • Karina Silvia Beatriz Miglioranza
    • 2
    • 3
  1. 1.Instituto de Geología de Costas y del CuaternarioUniversidad Nacional de Mar del Plata- Comisión de Investigaciones CientíficasBuenos AiresArgentina
  2. 2.Grupo de Ecotoxicología y Contaminación AmbientalUniversidad Nacional de Mar del PlataBuenos AiresArgentina
  3. 3.Instituto de Investigaciones Marinas y CosterasInstituto de Geología de Costas y del Cuaternario, CONICET-Universidad Nacional de Mar del PlataBuenos AiresArgentina

Personalised recommendations