Advertisement

A New Perspective is Required to Understand the Role of Forest Ecosystems in Global Mercury Cycle: A Review

  • Ming Ma
  • Hongxia Du
  • Dingyong WangEmail author
Focused Review

Abstract

Mercury (Hg) is one of the most toxic heavy metal pollutants, which can be easily transmitted and enriched through the food chain, posing severe threat to human beings. Forest ecosystems are one of the most active environments for biogeochemical cycles of Hg. It is essential to research on Hg cycling in the forest ecosystem, which contributes to a comprehensive understanding of global biogeochemical cycle of Hg. However, there is still a lack of consensus on whether the forest ecosystem is a “source” or “sink” of Hg in the global Hg cycle so far. Therefore, it is necessary to elucidate the current state of knowledge on Hg deposition, transformation and fate in the forest ecosystem, especially the existing puzzles or issues encountered by scientists worldwide. This review highlights the complexity and uncertainties of Hg cycling in forest ecosystems. It is proposed that a new perspective is required to further understand the role of forest ecosystems in global Hg cycle based on a sufficient understanding of Hg exchange fluxes at the interface of air–soil and air–plant, Hg deposition flux through litterfall, and accurate construction of Hg mass balance system.

Keywords

Mercury Forest ecosystem Biogeochemical cycle Deposition Mass balance 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41573105 & 41603098), and the Natural Science Foundation of Chongqing (Grant No. cstc2016jcyjA0461).

References

  1. Agnan Y, Le Dantec T, Moore CW, Edwards GC, Obrist D (2015) New constraints on terrestrial surface atmosphere fluxes of gaseous elemental mercury using a global database. Environ Sci Technol 50:507–524.  https://doi.org/10.1021/acs.est.5b04013 CrossRefGoogle Scholar
  2. Bash JO, Miller DR, Meyer TH, Bresnahan PA (2004) Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model. Atmos Environ 38:5683–5692.  https://doi.org/10.1016/j.atmosenv.2004.05.058 CrossRefGoogle Scholar
  3. Bergquist BA, Blum JD (2007) Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–420.  https://doi.org/10.1126/science.1148050 CrossRefGoogle Scholar
  4. Biswas A, Blum JD, Bergquist BA, Keeler GJ, Xie Z (2008) Natural mercury isotope variation in coal deposits and organic soils. Environ Sci Technol 42:8303–8309.  https://doi.org/10.1021/es801444b CrossRefGoogle Scholar
  5. Bullock OR, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku JY, Lohman K, Myers TC, Park RJ, Seigneur C, Selin NE, Sistla G, Vijayaraghavan K (2009) An analysis of simulated wet deposition of mercury from the North American mercury model intercomparison study. J Geophys Res Atmos.  https://doi.org/10.1029/2008JD011224 Google Scholar
  6. Chen J, Hintelmann H, Zheng W, Feng X, Cai H, Wang Z, Yuan S, Wang Z (2016) Isotopic evidence for distinct sources of mercury in lake waters and sediments. Chem Geol 426:33–44.  https://doi.org/10.1016/j.chemgeo.2016.01.030 CrossRefGoogle Scholar
  7. Cheng Z, Luo Y, Zhang T, Duan L (2017) Deposition of sulfur, nitrogen and mercury in two typical forest ecosystems in southern China. Environ Sci 38:5004–5011.  https://doi.org/10.13227/j.hjkx.201705103 Google Scholar
  8. Cui L, Feng X, Lin C-J, Wang X, Meng B, Wang X, Wang H (2014) Accumulation and translocation of 198Hg in four crop species. Environ Toxicol Chem 33:334–340.  https://doi.org/10.1002/etc.2443 CrossRefGoogle Scholar
  9. Demers JD, Driscoll CT, Fahey TJ, Yavitt JB (2007) Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecol Appl 17:1341–1351.  https://doi.org/10.1890/06-1697.1 CrossRefGoogle Scholar
  10. Demers JD, Blum JD, Zak DR (2013) Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle. Glob Biogeochem Cycles 27:222–238.  https://doi.org/10.1002/gbc.20021 CrossRefGoogle Scholar
  11. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983.  https://doi.org/10.1021/es305071v CrossRefGoogle Scholar
  12. Fay L, Gustin MS (2007) Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water Air Soil Pollut 181:373–384.  https://doi.org/10.1007/s11270-006-9308-6 CrossRefGoogle Scholar
  13. Figueiredo BR, Campos ABD, Silva RD, Hoffman NC (2018) Mercury sink in Amazon rainforest: soil geochemical data from the Tapajos national forest, Brazil. Environ Earth Sci 77:296.  https://doi.org/10.1007/s12665-018-7471-x CrossRefGoogle Scholar
  14. Fisher LS, Wolfe MH (2012) Examination of mercury inputs by throughfall and litterfall in the Great Smoky Mountains National Park. Atmos Environ 47:554–559.  https://doi.org/10.1016/j.atmosenv.2011.10.017 CrossRefGoogle Scholar
  15. Food and Agriculture Organization (2018) The state of the world’s forests 2018-forest pathways to sustainable development. Food and agricultural organization, Rome, p 58CrossRefGoogle Scholar
  16. Frescholtz TF, Gustin MS, Schorran DE, Fernandez GCJ (2003) Assessing the source of mercury in foliar tissue of quaking aspen. Environ Toxicol Chem 22:2114–2119.  https://doi.org/10.1002/etc.5620220922 CrossRefGoogle Scholar
  17. Frohne T, Rinklebe J (2013) Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Pollut 224:1591.  https://doi.org/10.1007/s11270-013-1591-4 CrossRefGoogle Scholar
  18. Fu X, Feng X, Yin R, Zhang H (2013) Diurnal variations of total mercury, reactive mercury, and dissolved gaseous mercury concentrations and water/air mercury flux in warm and cold seasons from freshwaters of southwestern China. Environ Toxicol Chem 32:2256–2265.  https://doi.org/10.1002/etc.2323 CrossRefGoogle Scholar
  19. Fu X, Zhang H, Lin CJ, Feng X, Zhou L, Fang S (2015) Correlation slopes of GEM/CO, GEM/CO2, and GEM/CH4 and estimated mercury emissions in China, South Asia, the Indochinese Peninsula, and Central Asia derived from observations in Northwestern and Southwestern China. Atmos Chem Phys 15:1013–1028.  https://doi.org/10.5194/acp-15-1013-2015 CrossRefGoogle Scholar
  20. Futter MN, Poste AE, Butterfield D, Dillon PJ, Whitehead PG, Dastoor AP, Lean DRS (2012) Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. Sci Total Environ 424:219–231.  https://doi.org/10.1016/j.scitotenv.2012.02.048 CrossRefGoogle Scholar
  21. Gbor P, Wen D, Meng F, Yang F, Zhang B, Sloan J (2006) Improved model for mercury emission, transport and deposition. Atmos Environ 40:973–983.  https://doi.org/10.1016/j.atmosenv.2005.10.040 CrossRefGoogle Scholar
  22. Gong P, Wang X, Xue Y, Xu B, Yao T (2014) Mercury distribution in the foliage and soil profiles of the Tibetan forest: processes and implications for regional cycling. Environ Pollut 188:94–101.  https://doi.org/10.1016/j.envpol.2014.01.020 CrossRefGoogle Scholar
  23. Gratz LE, Keeler GJ, Blum JD, Sherman LS (2010) Isotopic composition and fractionation of mercury in great lakes precipitation and ambient air. Environ Sci Technol 44:7764–7770.  https://doi.org/10.1021/es100383 CrossRefGoogle Scholar
  24. Graydon JA, St Louis VL, Hintelmann H, Lindberg SE, Sandilands KA, Rudd JWM, Kelly CA, Hall BD, Mowat LD (2008) Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ Sci Technol 42:8345–8351.  https://doi.org/10.1021/es801056j CrossRefGoogle Scholar
  25. Graydon JA, St Louis VL, Hintelmann H, Lindberg SE, Sandilands KA, Rudd JWM, Kelly CA, Tate MT, Krabbenhoft DP, Lehnherr I (2009) Investigation of uptake and retention of atmospheric Hg(II) by boreal forest plants using stable Hg isotopes. Environ Sci Technol 43:4960–4966.  https://doi.org/10.1021/es900357s CrossRefGoogle Scholar
  26. Grigal DF (2003) Mercury sequestration in forests and peatlands: a review. J Environ Qual 32:393–405.  https://doi.org/10.2134/jeq2003.3930 CrossRefGoogle Scholar
  27. Gustin MS, Lindberg SE, Weisberg PJ (2008) An update on the natural sources and sinks of atmospheric mercury. Appl Geochem 23:482–493.  https://doi.org/10.1016/j.apgeochem.2007.12.010 CrossRefGoogle Scholar
  28. Ishida A, Diloksumpun S, Ladpala P, Staporn D, Panuthai S, Gamo M, Yazaki K, Ishizuka M, Puangchit L (2006) Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiol 26:643–656.  https://doi.org/10.1093/treephys/26.5.643 CrossRefGoogle Scholar
  29. Jiskra M, Wiederhold JG, Skyllberg U, Kronberg RM, Kretzschmar R (2017) Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes. Environ Sci Process Impacts 19:1235–1248.  https://doi.org/10.1039/c7em00245a CrossRefGoogle Scholar
  30. Laacouri A, Nater EA, Kolka RK (2013) Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA. Environ Sci Technol 47:10462–10470.  https://doi.org/10.1021/es401357z CrossRefGoogle Scholar
  31. Larssen T, de Wit HA, Wiker M, Halse K (2008) Mercury budget of a small forested boreal catchment in southeast Norway. Sci Total Environ 404:290–296.  https://doi.org/10.1016/j.scitotenv.2008.03.013 CrossRefGoogle Scholar
  32. Lin Y, Larssen T, Vogt RD, Feng X, Zhang H (2011) Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model. Sci Total Environ 409:4596–4605.  https://doi.org/10.1016/j.scitotenv.2011.07.033 CrossRefGoogle Scholar
  33. Lin CJ, Zhu W, Li X, Feng X, Sommar J, Shang L (2012) Novel dynamic flux chamber for measuring air–surface exchange of Hg0 from soils. Environ Sci Technol 46:8910–8920.  https://doi.org/10.1021/Es3012386 CrossRefGoogle Scholar
  34. Lindberg SE, Hanson PJ, Meyers TP, Kim KH (1998) Air/surface exchange of mercury vapor over forests-the need for a reassessment of continental biogenic emissions. Atmos Environ 32:895–908.  https://doi.org/10.1016/S1352-2310(97)00173-8 CrossRefGoogle Scholar
  35. Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C (2007) A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36:19–32.  https://doi.org/10.1579/0044-7447(2007)36%5B19:ASOPAU%5D2.0.CO;2 CrossRefGoogle Scholar
  36. Lindqvist O, Johansson K, Aastrup M, Andersson A, Bringmark L, Hovsenius G, Hakanson L, Iverfeldt A, Meili M, Timm B (1991) Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water Air Soil Pollut 55:xi–261.  https://doi.org/10.1007/BF00542429 CrossRefGoogle Scholar
  37. Luo Y, Duan L, Wang L, Xu G, Wang S, Hao J (2014) Mercury concentrations in forest soils and stream waters in northeast and south China. Sci Total Environ 496:714–720.  https://doi.org/10.1016/j.scitotenv.2014.07.036 CrossRefGoogle Scholar
  38. Ma M, Wang D, Du H, Sun T, Zhao Z, Wang Y, Wei S (2015) Mercury dynamics and mass balance in a subtropical forest, southwestern China. Atmos Chem Phys 15: 35857–35880.  https://doi.org/10.5194/acpd-15-35857-2015 CrossRefGoogle Scholar
  39. Ma M, Du H, Wang D, Sun T, An S, Yang G (2017) The fate of mercury and its relationship with carbon, nitrogen and bacterial communities during litter decomposing in two subtropical forests. Appl Geochem 86:26–35.  https://doi.org/10.1016/j.apgeochem.2017.09.008 CrossRefGoogle Scholar
  40. Millard GD, Driscoll CT, Burns DA, Montesdeoca MR, Riva-Murray K (2018) Response of mercury in an adirondack (NY, USA) forest stream to watershed lime application. Environ Sci Process Impacts 624:96–105.  https://doi.org/10.1039/C7EM00520B Google Scholar
  41. Navratil T, Shanley J, Rohovec J, Hojdova M, Penizek V, Buchtova J (2014) Distribution and pools of mercury in Czech forest soils. Water Air Soil Pollut 225:1829.  https://doi.org/10.1007/s11270-013-1829-1 CrossRefGoogle Scholar
  42. Obrist D (2007) Atmospheric mercury pollution due to losses of terrestrial carbon pools? Biogeochemistry 85:119–123.  https://doi.org/10.1007/s10533-007-9108-0 CrossRefGoogle Scholar
  43. Obrist D, Johnson DW, Lindberg SE, Luo Y, Hararuk O, Bracho R, Battles JJ, Dail DB, Edmonds RL, Monson RK, Ollinger SV, Pallardy SG, Pregitzer KS, Todd DE (2011) Mercury distribution across 14 U.S. forests. Part I: spatial patterns of concentrations in biomass, litter, and soils. Environ Sci Technol 45:3974–3981.  https://doi.org/10.1021/es104384m CrossRefGoogle Scholar
  44. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993.  https://doi.org/10.1126/science.1201609 CrossRefGoogle Scholar
  45. Pannu R, Siciliano SD, O’Driscoll NJ (2014) Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils. Environ Pollut 193:138–146.  https://doi.org/10.1016/j.envpol.2014.06.023 CrossRefGoogle Scholar
  46. Schroeder WH, Munthe J (1998) Atmospheric mercury-an overview. Atmos Environ 32:809–822.  https://doi.org/10.1016/S1352-2310(97)00293-8 CrossRefGoogle Scholar
  47. Selin NE (2014) Global change and mercury cycling: challenges for implementing a global mercury treaty. Environ Toxicol Chem 33:1202–1210.  https://doi.org/10.1002/etc.2374 CrossRefGoogle Scholar
  48. Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaegle L, Sunderland EM (2008) Global 3-D land-ocean-atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochem Cycles 22:Gb2011.  https://doi.org/10.1029/2007gb003040 Google Scholar
  49. Shetty SK, Lin CJ, Streets DG, Jang C (2008) Model estimate of mercury emission from natural sources in East Asia. Atmos Environ 42:8674–8685.  https://doi.org/10.1016/j.atmosenv.2008.08.026 CrossRefGoogle Scholar
  50. Sommar J, Zhu W, Shang L, Lin CJ, Feng X (2016) Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat–corn rotation cropland in the North China Plain. Biogeosciences 13:2029–2049.  https://doi.org/10.5194/bg-13-2029-2016 CrossRefGoogle Scholar
  51. Sonke JE, Blum JD (2013) Advances in mercury stable isotope biogeochemistry. Chem Geol 336:1–4.  https://doi.org/10.1016/j.chemgeo.2012.10.035 CrossRefGoogle Scholar
  52. St Louis VL, Rudd JWM, Kelly CA, Hall BD, Rolfhus KR, Scott KJ, Lindberg SE, Dong W (2001) Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environ Sci Technol 35:3089–3098.  https://doi.org/10.1021/es001924p CrossRefGoogle Scholar
  53. Stamenkovic J, Gustin MS (2009) Nonstomatal versus stomatal uptake of atmospheric mercury. Environ Sci Technol 43:1367–1372.  https://doi.org/10.1021/es801583a CrossRefGoogle Scholar
  54. Teixeira DC, Montezuma RC, Oliveira RR, Silva EV (2012) Litterfall mercury deposition in Atlantic forest ecosystem from SE-Brazil. Environ Pollut 164:11–15.  https://doi.org/10.1016/j.envpol.2011.10.032 CrossRefGoogle Scholar
  55. Wang J, Feng X, Anderson CW, Wang H, Zheng L, Hu T (2012) Implications of mercury speciation in thiosulfate treated plants. Environ Sci Technol 46:5361–5368.  https://doi.org/10.1021/es204331a CrossRefGoogle Scholar
  56. Wang X, Lin CJ, Feng X (2014) Sensitivity analysis of an updated bidirectional air-surface exchange model for elemental mercury vapor. Atmos Chem Phys 14:6273–6287.  https://doi.org/10.5194/acpd-13-32229-2013 CrossRefGoogle Scholar
  57. Wang X, Bao Z, Lin CJ, Yuan W, Feng X (2016a) Assessment of global mercury deposition through litterfall. Environ Sci Technol 50:8548–8557.  https://doi.org/10.1021/acsest5b06351 CrossRefGoogle Scholar
  58. Wang X, Lin C, Lu Z, Zhang H, Zhang Y, Feng X (2016b) Enhanced accumulation and storage of mercury on subtropical evergreen forest floor: implications on mercury budget in global forest ecosystems. J Geophys Res Biogeosci 121:2096–2109.  https://doi.org/10.1002/2016JG003446 CrossRefGoogle Scholar
  59. Yin R, Feng X, Meng B (2013) Stable Hg isotope variation in rice plants (Oryza sativa L) from the Wanshan Hg mining district SW China. Environ Sci Technol 47:2238–2245.  https://doi.org/10.1021/es304302a CrossRefGoogle Scholar
  60. Yin R, Feng X, Hurley JP, Krabbenhoft DP, Lepak RF, Kang S, Yang H, Li X (2016) Historical records of mercury stable isotopes in sediments of Tibetan lakes. Sci Rep 6:23332.  https://doi.org/10.1038/srep23332 CrossRefGoogle Scholar
  61. Yu B, Fu X, Yin R, Zhang H, Wang X, Lin CJ, Wu C, Zhang Y, He N, Fu P, Wang Z, Shang L, Sommar J, Sonke JE, Maurice L, Guinot B, Feng X (2016) Isotopic composition of atmospheric mercury in china: new evidence for source and transformation processes in air and in vegetation. Environ Sci Technol 50:9262–9269.  https://doi.org/10.1021/acsest6b01782 CrossRefGoogle Scholar
  62. Zhang L, Brook JR, Vet R (2002) On ozone dry deposition—with emphasis on non-stomatal uptake and wet canopies. Atmos Environ 36:4787–4799.  https://doi.org/10.1016/S1352-2310(02)00567-8 CrossRefGoogle Scholar
  63. Zhang L, Wang S, Wang L, Wu Y, Duan L, Wu Q, Wang F, Yang M, Yang H, Hao J, Liu X (2015) Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environ Sci Technol 49:3185–3194.  https://doi.org/10.1021/es504840m CrossRefGoogle Scholar
  64. Zhou J, Feng X, Liu H, Zhang H, Fu X, Bao Z, Wang X, Zhang Y (2013) Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of southwestern China. Atmos Environ 81:364–372.  https://doi.org/10.1016/j.atmosenv.2013.09.010 CrossRefGoogle Scholar
  65. Zhou J, Wang Z, Zhang X, Chen J (2015) Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China. Environ Pollut 202:187–195.  https://doi.org/10.1016/j.envpol.2015.03.021 CrossRefGoogle Scholar
  66. Zhu W, Lin CJ, Wang X, Sommar J, Fu X, Feng X (2016) Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review. Atmos Chem Phys 16:4451–4480.  https://doi.org/10.5194/acp-16-4451-2016 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Resources and EnvironmentSouthwest UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Bio-Resource for BioenergySouthwest UniversityChongqingChina

Personalised recommendations