Advertisement

The Impact of Sublethal Concentrations of Treated Leachate on Nile tilápia (Oreochromis niloticus)

  • Michel Gallão
  • Karla G. Gnocchi
  • Luciano R. Carvalho
  • Bruno F. Silva
  • Andressa N. Barbosa
  • Adriana R. Chippari-GomesEmail author
Article

Abstract

The objective of this study was to evaluate the impact of sublethal concentrations of treated landfill leachate on Oreochromis niloticus individuals after exposure for 96 h, by assessing biochemical, genotoxic and immunologic biomarkers. Among biochemical biomarkers (activities of ALT, AST and GST enzymes), the treated landfill leachate did not cause significant alterations on O. niloticus and did not significantly affect leukocytes used as an immunologic biomarker. On the other hand, treated leachate induced genotoxic damages, since an increase in erythrocytic micronuclei and in DNA damage (comet assay) were observed in fish exposed to all treatment (2, 4 and 6 mL L−1). Acute toxicity of treated leachate in O. niloticus caused only genotoxic changes in blood cells, showing that micronuclei and comet assay, together, are effective biomarkers in determining the acute toxicity of treated leachate in aquatic environments. This work also shows that leachate, although treated, caused some damages to O. niloticus, which indicates the employed treatment was not efficient in eliminating all genotoxic substances from the leachate.

Keywords

Acute toxicity Biomarkers Contaminants Fish 

Notes

Acknowledgements

The authors would like to thank the Post-Graduate Program in Ecology of Ecosystems (UVV) and the Laboratory of Applied Ichthyology (Lab Peixe - UVV) for their support in carrying out this research.

References

  1. Abdel-Khalek AA, Kadry MAM, Badran SR, Marie MS (2015) Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 72:43–57.  https://doi.org/10.1016/j.jobaz.2015.04.001 CrossRefGoogle Scholar
  2. Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135CrossRefGoogle Scholar
  3. APHA—Standard Public Health Association (1998) Methods for the examination of water and wastewater, 18th edn. American Public Health Association, New York, p 1050Google Scholar
  4. Authman MMN, Abbas WT, Gaafar AY (2012) Metals concentrations in Nile tilapia Oreochromis niloticus (Linnaeus, 1758) from illegal fish farm in Al-Minufiya Province, Egypt, and their effects on some tissues structures. Ecotoxicol Environ Saf 84:163–172.  https://doi.org/10.1016/j.ecoenv.2012.07.005 CrossRefGoogle Scholar
  5. Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP (2018) An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 200:158–167.  https://doi.org/10.1016/j.aquatox.2018.05.001 CrossRefGoogle Scholar
  6. Bado-Nilles A, Jolly S, Lamand F, Geffard A, Gagnaire B, Turies C, Porcher JM, Sanchez W (2015) Involvement of fish immunomarkers in environmental biomonitoring approach: urban and agri-viticultural context. Ecotoxicol Environ Saf 120:35–40.  https://doi.org/10.1016/j.ecoenv.2015.05.021 CrossRefGoogle Scholar
  7. Bandeirantes A (2004) Utilização de aterro sanitário para destinação final de resíduos sólidos gerados nos grandes centros urbanos. Use of a landfill for the final disposal of solid waste generated in large urban centers. Exacta 2:191–202.  https://doi.org/10.5585/exacta.v2i0.553 Google Scholar
  8. Butt TE, Gouda HM, Baloch MI, Paul P, Javadi AA, Alam A (2014) Literature review of baseline study for risk analysis—the landfill leachate case. Environ Int 63:149–162.  https://doi.org/10.1016/j.envint.2013.09.015 CrossRefGoogle Scholar
  9. Carrasco KR, Tilbury KL, Myers MS (1990) Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47(11):2123–2136.  https://doi.org/10.1139/f90-237 CrossRefGoogle Scholar
  10. de Brito-Pelegrini NN, Paterniani JES, Giovani AB, Pelegrini RT (2011) Avaliação da redução da poluição do chorume tratado por processo fotoquímico. Evaluation of the reduction of the pollution of the treated leachate by photochemical process. Augmdomus 3:20–30Google Scholar
  11. Dei S, Samanta P, Pal S, Mukherjee AK, Kole D, Ghosh AR (2016) Integrative assesment of biomarker responses in teleostean fishes exposed to glyphosate-based herbicide (Excel Mera 71). Emerg Contam 2:191–203.  https://doi.org/10.1016/j.emcon.2016.12.002 CrossRefGoogle Scholar
  12. Fauziah SH, Izzati MN, Agamuthu P (2013) Toxicity on Anabas testudineus: a case study of sanitary landfill leachate. Proc Environ Sci 18:14–19.  https://doi.org/10.1016/j.proenv.2013.04.003 CrossRefGoogle Scholar
  13. Fernandes H, Viancelli A, Martins CL, Antonio RV, Costa RHR (2013) Microbial and chemical profile of a ponds system for the treatment of landfill leachate. Waste Manag 33:2123–2128.  https://doi.org/10.1016/j.wasman.2012.10.024 CrossRefGoogle Scholar
  14. Garcia LDO, Okamoto MH, Riffel APK, Saccol EM, Pavanato MA, Sampaio LAN (2015) Oxidative stress parameters in juvenile Brazilian flounder Paralichthys orbignyanus (Valenciennes, 1839) (Pleuronectiformes: Paralichthyidae) exposed to cold and heat shocks. Neotrop Ichthyol.  https://doi.org/10.1590/1982-0224-20140148 Google Scholar
  15. Habig WH, Jacoby WB (1981) Assays for differentiation of glutathione S-Transferases. Methods Enzymol 77:398–405.  https://doi.org/10.1016/S0076-6879(81)77053-8 CrossRefGoogle Scholar
  16. Habig WH, Pabst MJ, Jakoby WB (1974) Glutahione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  17. Heddle JA, Cimino MC, Hayashi M, Romagna F, Shelby MD, Tucker JD, Vanparys P, MacGregor JT (1991) Micronuclei as an index of cytogenetic damage: past, present, and future. Environ Mol Mutagen 18(4):277–291.  https://doi.org/10.1002/em.2850180414 CrossRefGoogle Scholar
  18. IBGE - Instituto Brasileiro de Geografia e Estatística (2010) Indicadores de Desenvolvimento Sustentável—Brasil 2010. Sustainable Development Indicators—Brazil 2010.Rio de Janeiro p 443Google Scholar
  19. IBGE—Instituto Brasileiro de Geografia e Estatística (2008) Pesquisa Nacional de saneamento Básico. National Research of Basic Sanitation. Rio de Janeiro p 219. https://biblioteca.ibge.gov.br/visualizacao/livros/liv45351.pdf
  20. IBGE—Instituto Brasileiro de Geografia e Estatística (2011) Atlas de saneamento. Atlas of sanitation. Rio de Janeiro p 268Google Scholar
  21. Jia R, Dua J, Cao L, Li Y, Johnson O, Gu Z, Jeney G, Xu P, Yin G (2019) Antioxidative, inflammatory and immune responses in hydrogen peroxide induced liver injury of tilapia (GIFT, Oreochromis niloticus). Fish Shellfish Immunol 84:894–905.  https://doi.org/10.1016/j.fsi.2018.10.084 CrossRefGoogle Scholar
  22. Lebrun JD, Geffard O, Urien N, François A, Uher E, Fechner LC (2015) Seasonal variability and inter-species comparison of metal bioaccumulation in caged gammarids under urban diffuse contamination gradient: implications for biomonitoring investigations. Sci Total Environ 511:501–508.  https://doi.org/10.1016/j.scitotenv.2014.12.078 CrossRefGoogle Scholar
  23. Milinkovitch T, Bustamante P, Huet V, Reigner A, Churlaud C, Thomas-Guyon (2015) In situ evaluation of oxidative stress and immunological parameters as ecotoxicological biomarkers in a novel sentinel species (Mimachlamys varia). Aquat Toxicol 161:170–175.  https://doi.org/10.1016/j.aquatox.2015.02.003 CrossRefGoogle Scholar
  24. Moraes V, Andrade D, Freitas TRO De (2004) Comet assay using mullet (Mugil sp.) and sea catfish (Netuma sp.) erythrocytes for the detection of genotoxic pollutants in aquatic environment. Mutat Res 560(1):57–67.  https://doi.org/10.1016/j.mrgentox.2004.02.006 CrossRefGoogle Scholar
  25. Nwani CD, Nagpure NS, Kumar R, Kushwaha B, Lakra WS (2013) DNA damage and oxidative stress modulatory effects of glyphosate-based herbicide in freshwater fish, Channa punctatus. Environ Toxicol Pharmacol 36:539–547.  https://doi.org/10.1016/j.etap.2013.06.001 CrossRefGoogle Scholar
  26. Pacheco MG, Santos MA (1996) Induction of micronuclei and nuclear abnormalities in the erythrocytes of Anguilla anguilla L. exposed either to cyclophosphamide or to bleached kraft pulp mill effluent. Fresen Environ Bull 5:746–751Google Scholar
  27. PLANSAB—Plano Nacional de Saneamento Básico (2013) Plano Nacional de Saneamento Básico—Mais sáude com qualidade de vida e cidadania. National Plan for Basic Sanitation—More health with quality of life and citizenship.Brasília p 273Google Scholar
  28. Regoli F, Giuliani ME, Benedetti M, Arukwe A (2011) Molecular and biochemical biomarkers in environmental monitoring: a comparison of biotransformation and antioxidant defense systems in multiple tissues. Aquat Toxicol 105:56–66CrossRefGoogle Scholar
  29. Risjani Y, Couteau J, Minier C (2014) Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud. Mar Environ Res 96:73–80.  https://doi.org/10.1016/j.marenvres.2014.02.004 CrossRefGoogle Scholar
  30. Sampath H, Ramesh M, Manavalaramanujam (2002) Responses of plasma transaminase activity in Cyprinus carpio var. communis to mercury toxicity. J Indian Fish 29:7–13Google Scholar
  31. Santos CA, Novaes LS, Gomes LC (2010) Genotoxic effects of the diesel water-soluble fraction on the seahorse Hippocampus reidi (Teleostei: Syngnathidae) during acute exposure. Zoologia 27:956–960.  https://doi.org/10.1590/S1984-46702010000600017 CrossRefGoogle Scholar
  32. Simonato JD, Albinati C, Martinez CB (2006) Effects of the water soluble fraction of diesel fuel oil on some functional parameters of the neotropical freshwater fish Prochilodus lineatus Valenciennes. Bull Environ Contam Toxicol 76:505–511.  https://doi.org/10.1007/s00128-006-0949-3 CrossRefGoogle Scholar
  33. Smith IR (1990) Erythrocytic micronuclei in wild fish from Lakes Superior and Ontario that have pollution-associated neoplasia. J Great Lakes Res 16(1):139–142CrossRefGoogle Scholar
  34. Tavares-Dias M, Moraes FR (2003) Características hematológicas da Tilapia rendalli Boulenger, 1896 (Osteichthyes: Cichlidae) capturada em “Pesque-Pague” de Franca, São Paulo, Brasil. Biosci J 19:107–114Google Scholar
  35. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221.  https://doi.org/10.1002/(SICI)1098-2280(2000)35:3%3C206::AID-EM8%3E3.0.CO;2-J CrossRefGoogle Scholar
  36. Tsarpali V, Dailianis S (2012) Investigation of landfill leachate toxic potency: an integrated approach with the use of stress indices in tissues of mussels. Aquat Toxicol 124–125:58–65.  https://doi.org/10.1016/j.aquatox.2012.07.008 CrossRefGoogle Scholar
  37. Tuzuki BLL, Delunardo FAC, Ribeiro LN, Melo CP, Gomes LC, Chippari-Gomes AR (2017) Effects of manganese on fat snook Centropomus parallelus (Carangaria: Centropomidae) exposed to different temperatures. Neotrop Ichthyol 15(4):e170054.  https://doi.org/10.1590/1982-0224-20170054 CrossRefGoogle Scholar
  38. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  39. Vital MHF, Pinto MAC, Ingouville M (2014) Estimativa de investimentos em aterros sanitários para atendimento de metas estabelecidas pela Política Nacional de Resíduos Sólidos entre 2015 e 2019. Saneamento ambiental. BNDES Setorial 40:43–92Google Scholar
  40. Wester PW (1994) Fish as biomarkers in immunotoxicology. Toxicology 86:213–232CrossRefGoogle Scholar
  41. Winkaler EU, Santos TRM, Machado-Neto JG, Martinez CBR (2007) Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comp Biochem Physiol 145:236–244.  https://doi.org/10.1016/j.cbpc.2006.12.009 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Ictiologia Aplicada (LAB PEIXE)Universidade Vila Velha - UVVVila VelhaBrazil

Personalised recommendations