Advertisement

Enantioselective Oxidative Stress Induced by S- and Rac-metolachlor in Wheat (Triticum aestivum L.) Seedlings

  • Qian Qu
  • Mingjing Ke
  • Yizhi Ye
  • Qi Zhang
  • Tao Lu
  • Zhenyan Zhang
  • Haifeng QianEmail author
Article

Abstract

The unfounded use of chiral pesticides has caused widespread concern. In this study, the enantioselective effects of S- and racemic (Rac)-metolachlor on the oxidative stress of wheat seedlings was determined based on physiological and gene transcription differences. Growth inhibition increased with increasing concentrations of tested metolachlor, and S-metolachlor had a stronger inhibitory effect than did Rac-metolachlor. Root growth was also significantly inhibited, but no enantioselective effects from the tested concentrations of the metolachlor enantiomers were observed. At a concentration of 5 mg L−1, the maximal fresh weight inhibition reached 63.7% and 53.8% for S-metolachlor and Rac-metolachlor, respectively. In response to the S-metolachlor treatment, the maximum level of superoxide anions and malondialdehyde (MDA) increased to 1.73 and 2.55 times that in response to the control treatment, both of which were greater than those in response to the Rac-metolachlor treatment. The activity of superoxide dismutase (SOD) also increased in response to the S-metolachlor treatment, but the activity of peroxidase (POD) decreased. Real-time polymerase chain reaction (PCR) revealed that, compared with the Rac-metolachlor treatment, the S-metolachlor treatment attenuated the expression of several antioxidant genes. Together, these results demonstrate that S-metolachlor has a greater effect than does Rac-metolachlor on wheat seedlings.

Keywords

Enantioselectivity Metolachlor Antioxidant enzyme Gene transcription 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (21777144, 21577128), the Chinese Academy of Science (CAS) Pioneer Hundred Talents Program (H.F. Qian) and the Xinjiang Uighur Autonomous Region Talent Project (H.F. Qian).

References

  1. Asad M, Lavoie M, Song H, Jin Y, Fu Z, Qian H (2017) Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Sci Total Environ 580:1287–1299CrossRefGoogle Scholar
  2. Biczak R (2017) Changes in growth and physiological parameters of spring barley and common radish under the influence of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate. Plant Physiol Biochem 115:259–268CrossRefGoogle Scholar
  3. Buser H, Poiger T, Müller M (2000) Changed enantiomer composition of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market. Environ Sci Technol 34(13):2690–2696CrossRefGoogle Scholar
  4. Chen Z, Gallie D (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142(2):775–787CrossRefGoogle Scholar
  5. Chen S, Li X, Lavoie M, Jin Y, Xu J, Fu Z, Qian H (2017) Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. J Environ Sci 51:352–360CrossRefGoogle Scholar
  6. Delcour I, Spanoghe P, Uyttendaele M (2015) Literature review: impact of climate change on pesticide use. Food Res Int 68:7–15CrossRefGoogle Scholar
  7. Fan H, Liu H, Dong Y, Chen C, Wang Z, Guo J, Du S (2019) Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus: role of cations and anions. Sci Total Environ 651(Pt 1):570–579CrossRefGoogle Scholar
  8. Fang S, Tao Y, Zhang Y, Kong F, Wang Y (2018) Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings. Chirality 30(4):469–474CrossRefGoogle Scholar
  9. Garrison A (2006) Probing the enantioselectivity of chiral pesticides. Environ Sci Technol 40(1):16–23CrossRefGoogle Scholar
  10. Ke M, Zhu Y, Zhang M, Gumai H, Zhang Z, Xu J, Qian H (2017) Physiological and molecular response of Arabidopsis thaliana to CuO nanoparticle (nCuO) exposure. Bull Environ Contam Toxicol 99, 713–718Google Scholar
  11. Ke M, Qu Q, Peijnenburg W, Li X, Zhang M, Zhang Z, Lu T, Pan X, Qian H (2018) Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci Total Environ 644:1070–1079CrossRefGoogle Scholar
  12. Kumar M, Trivedi N, Reddy C, Jha B (2011) Toxic effects of imidazolium ionic liquids on the green seaweed Ulva lactuca: oxidative stress and DNA damage. Chem Res Toxicol 24(11):1882–1890CrossRefGoogle Scholar
  13. Liu H, Xiong M (2009) Comparative toxicity of racemic metolachlor and s-metolachlor to Chlorella pyrenoidosa. Aquat Toxicol 93(2–3):100–106CrossRefGoogle Scholar
  14. Liu H, Ye W, Zhan X, Liu W (2006) A comparative study of rac- and s-metolachlor toxicity to Daphnia magna. Ecotoxicol Environ Saf 63(3):451–455CrossRefGoogle Scholar
  15. Liu W, Ye J, Jin M (2009) Enantioselective phytoeffects of chiral pesticides. J Agric Food Chem 57(6):2087–2095CrossRefGoogle Scholar
  16. Liu H, Huang R, Xie F, Zhang S, Shi J (2012a) Enantioselective phytotoxicity of metolachlor against maize and rice roots. J Hazard Mater 217–218(3):330–337CrossRefGoogle Scholar
  17. Liu H, Xiong M, Tian B (2012b) Comparative phytotoxicity of rac-metolachlor and s-metolachlor on rice seedlings. J Environ Sci Health B 47(5):410–419CrossRefGoogle Scholar
  18. Liu T, Zhu L, Wang J, Wang J, Xie H (2015) The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings. J Hazard Mater 285:27–36CrossRefGoogle Scholar
  19. Liu H, Xia Y, Cai W, Zhang Y, Zhang X, Du S (2017) Enantioselective oxidative stress and oxidative damage caused by Rac- and S-metolachlor to Scenedesmus obliquus. Chemosphere 173:22–30CrossRefGoogle Scholar
  20. Lu T, Ke M, Peijnenburg M, Zhu Y, Zhang M, Sun L, Fu Z, Qian H (2018a) Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage. J Agric Food Chem 66:2645–2653CrossRefGoogle Scholar
  21. Lu T, Zhu Y, Xu J, Ke M, Zhang M, Tan C, Fu Z, Qian H (2018b) Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa. Environ Pollut 234:379–388CrossRefGoogle Scholar
  22. Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, Fu Z, Sun L, Gillings M, Peñuelas J, Qian H, Zhu YG (2018c) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:231CrossRefGoogle Scholar
  23. Mittler R, Vanderauwera S, Gollery M, Van B (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498CrossRefGoogle Scholar
  24. Qi Y, Liu D, Zhao W, Liu C, Zhou Z, Wang P (2015) Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide. Pestic Biochem Physiol 125:38–44CrossRefGoogle Scholar
  25. Qian H, Chen W, Li J, Wang J, Zhou Z, Liu W, Fu Z (2009a) The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat Toxicol 92(4):250–257CrossRefGoogle Scholar
  26. Qian H, Hu H, Mao Y, Ma J, Zhang A, Liu W, Fu Z (2009b) Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere 76(7):885–892CrossRefGoogle Scholar
  27. Qian H, Lu T, Peng X, Han X, Fu Z, Liu W (2011) Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana. Plos ONE 6(5), e19451Google Scholar
  28. Qian H, Wang R, Chen J, Ding H, Yong W, Songlin R, Fu Z (2012) Analysis of enantioselective biochemical, physiological, and transcriptional effects of the chiral herbicide diclofop methyl on rice seedlings. J Agric Food Chem 60(22):5515–5523CrossRefGoogle Scholar
  29. Qian H, Han X, Zhang Q, Sun Z, Sun L, Fu Z (2013) Imazethapyr enantioselectively affects chlorophyll synthesis and photosynthesis in Arabidopsis thaliana. J Agric Food Chem 61(6):1172–1178CrossRefGoogle Scholar
  30. Qian H, Lu H, Ding H, Lavoie M, Li Y, Liu W, Fu Z (2015) Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Sci Rep 5:11975CrossRefGoogle Scholar
  31. Qian H, Zhu K, Lu H, Lavoie M, Chen S, Zhou Z, Deng Z, Chen J, Fu Z (2016) Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: new insights from proteomic and physiological analyses. Sci Total Environ 572:1213–1221CrossRefGoogle Scholar
  32. Rachoski M, Gazquez A, Calzadilla P, Bezus R, Rodriguez A, Ruiz O, Menendez A, Maiale S (2015) Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress. Acta Physiol Plant 37(6):1–12CrossRefGoogle Scholar
  33. Rice C, McCarty G, Bialek-Kalinski K, Zabetakis K, Torrents A, Hapeman C (2016) Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: a tool for dating groundwater movement in agricultural settings. Sci Total Environ 560–561:36–43CrossRefGoogle Scholar
  34. Rubio M, Bustos-Sanmamed P, Clemente M, Becana M (2009) Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol 181(4):851–859CrossRefGoogle Scholar
  35. Salah S, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278CrossRefGoogle Scholar
  36. Skipsey M, Davis B, Edwards R (2005) Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays). Biochem J 391(Pt 3):567–574CrossRefGoogle Scholar
  37. Song H, Lavoie M, Fan X, Tan H, Liu G, Xu P, Fu Z, Paerl H, Qian H (2017) Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME J 11(8):1865–1876CrossRefGoogle Scholar
  38. Sun C, Chen S, Jin Y, Song H, Ruan S, Fu Z, Asad M, Qian H (2016) Effects of the herbicide imazethapyr on photosynthesis in PGR5- and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels. J Agric Food Chem 64(22):4497–4504CrossRefGoogle Scholar
  39. Wen Y, Chen H, Shen C, Zhao M, Liu W (2011) Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species. Environ Sci Technol 45(11):4778–4784CrossRefGoogle Scholar
  40. Zhan X, Liu H, Miao Y, Liu W (2006) A comparative study of rac- and s-metolachlor on some activities and metabolism of silkworm, Bombyx mori L. Pestic. Biochem Physiol 85(3):133–138Google Scholar
  41. Zhang B, Li X, Chen D, Wang J (2013) Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor. Protoplasma 250(1):103–110CrossRefGoogle Scholar
  42. Zhang Z, Ke M, Qu Q, Peijnenburg W, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qian Qu
    • 1
  • Mingjing Ke
    • 1
  • Yizhi Ye
    • 1
  • Qi Zhang
    • 1
  • Tao Lu
    • 1
  • Zhenyan Zhang
    • 1
  • Haifeng Qian
    • 1
    • 2
    Email author
  1. 1.College of EnvironmentZhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiPeople’s Republic of China

Personalised recommendations