Advertisement

Sub-lethal Responses of the Polychaete Armandia agilis in Whole-sediment Toxicity Testing

  • Renan Vandre da Silva Toscano Saes
  • Lucas Buruaem MoreiraEmail author
  • Tiago Farias Peres
  • Satie Taniguchi
  • Marcia Caruso Bícego
  • Rozane Valente Marins
  • Denis Moledo de Souza Abessa
Article

Abstract

The present study assessed biochemical responses as sublethal endpoints in the polychaete Armandia agilis exposed to contaminated sediments to in order to assess its potential use as a test organism. Sediment samples from several locations at a dredging site were obtained and used in whole-sediment exposures. Samples were tested with A. agilis to determine the 10-day toxicity of the 100% sample and the enzymatic activity of catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) biochemical measurements made in whole-body homogenates of a subset of the surviving organisms. Biochemical responses reported in A. agilis were not statistically different from the reference site sediment, however, the integrated analysis demonstrated that contaminants bound to sediment samples influenced the sublethal effects.

Keywords

Annelida Benthic organisms Biomarkers Dredging Environmental monitoring Test organism 

Notes

Acknowledgements

This study was supported by the port authorities of Ceará State (Companhia Docas do Ceará). The project was also funded by the Foundation for Research Support of Ceará State (FUNCAP, grant number 1571/07 and BMD-0008-00058.01.18/09) and the Brazilian National Research Council (CNPQ) within the Continent-Ocean Materials Transfer program (INCT-TMCOcean, grant number 573.601/2008-9). R.V.S.T. Saes was funded by FAPESP (grant #2010/07605-7). LB. Moreira (grant #142002/2010-0) and DMS Abessa (grants #552299/2010-3 and #311609/2014-7) were sponsored by CNPq.

References

  1. Amaral ACZ, Migotto AE, Turra A, Schaeffer-Novelli Y (2010) Araçá: biodiversidade, impactos e ameaças. Biota Neotrop 10:219–264CrossRefGoogle Scholar
  2. Andreescu S, Marty JL (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23:1–15CrossRefGoogle Scholar
  3. Bradford MB (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  4. Brasil (2012) Resolution No. 454/12. Establishing general guidelines to the evaluation of dredging material in brazilian jurisdictional waters, CONAMA, Environmental National CouncilGoogle Scholar
  5. Chapman PM, Ho KT, Munns WR, Solomon K, Weinstein MP (2002) Issues in sediment toxicity and ecological risk assessment. Mar Pollut Bull 44:271–278CrossRefGoogle Scholar
  6. Di Giulio RT, Meyer JN (2008) Reactive oxygen species and oxidative stress. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, New York, pp 273–324CrossRefGoogle Scholar
  7. Díaz-Jaramillo M, Miglioranza KSB, Gonzalez M et al (2016) Uptake, metabolism and sub-lethal effects of BDE-47 in two estuarine invertebrates with different trophic positions. Environ Pollut 213:608–617CrossRefGoogle Scholar
  8. Douhri H, Sayah F (2009) The use of enzymatic biomarkers in two marine invertebrates Nereis diversicolor and Patella vulgata for the biomonitoring of Tangier’s bay (Morocco). Ecotox Environ Safe 72:394–399CrossRefGoogle Scholar
  9. Giangrande A (1997) Polychaete reproductive patterns, life cycle and life histories: an overview. In: Ansel AD, Gibson RN, Barnes M (eds) Oceanography and marine biology: an annual review, vol 35. Aberdeen University Press, London, pp 323–386Google Scholar
  10. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  11. Hutchings P (1998) Biodiversity and functioning of polychaetes in benthic sediments. Biodivers Conserv 7:1133–1145.  https://doi.org/10.1023/A:1008871430178 CrossRefGoogle Scholar
  12. Leão JC, Geracitano LA, Monserrat JM, Amado LL, Yunes JS (2008) Microcystin-induced oxidative stress in Laeonereis acuta (Polychaeta, Nereididae). Mar Environ Res 66:92–94CrossRefGoogle Scholar
  13. Maia LP, Jimenez JA, Serra J, Morais JO (1998) The coast line of Fortaleza City. A product of environmental impacts caused by the Mucuripe Harbor. Arq Cienc Mar 31:93–100Google Scholar
  14. Maranho LA, Baena-Nogueras RM, Lara-Martín PA, DelValls TA, Martín-Díaz ML (2014) Bioavailability, oxidative stress, neurotoxicity and genotoxicity of pharmaceuticals bound to marine sediments. The use of the polychaete Hediste diversicolor as bioindicator species. Environ Res 134:353–365CrossRefGoogle Scholar
  15. Martín-Díaz ML, Blasco J, Sales D, DelValls TA (2004) Biomarkers as tools to assess sediment quality. Laboratory and field surveys. TrAC-Trend Anal Chem 23:10–11Google Scholar
  16. Martín-Díaz ML, Gagné F, Blaise C (2009) The use of biochemical responses to assess ecotoxicological effects of Pharmaceutical and Personal Care Products (PPCPs) after injection in the mussel Elliptio complanata. Environ Toxicol Pharmacol 28:237–242CrossRefGoogle Scholar
  17. McCave IN, Syvitski JPM (1991) Principles and methods of geological particle size analysis. In: Syvitski JPM (ed) Principles, methods, and application of particle size analysis. Cambridge University Press, Cambridge, pp 3–21CrossRefGoogle Scholar
  18. Monserrat JM, Geracitano LA, Assis HCS, Colares EP, Bianchini A (2006) Biomarcadores Bioquímicos. In: Lana PC, Bianchini A, Ribeiro CAO, Niencheski LFH, Fillmann G, Santos CSG (eds) Avaliação Ambiental de Estuários Brasileiros - diretrizes metodológicas. Museu Nacional/UFRJ, Rio de Janeiro, pp 124–131Google Scholar
  19. Moreira LB, Castro IB, Hortellani MA et al (2017) Effects of harbor activities on sediment quality in a semi-arid region in brazil. Ecotoxicol Environ Safe 135:137–151CrossRefGoogle Scholar
  20. Nunes SM, Josende ME, Ruas CP et al (2017) Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta. Toxicology 376:51–58CrossRefGoogle Scholar
  21. Pereira CDS, Abessa DMS, Choueri RB et al (2014) Ecological relevance of sentinels’ biomarker responses: a multi-level approach. Mar Environ Res 96:118–126CrossRefGoogle Scholar
  22. Saes RVST, Moreira LB, Davanso MB, Perina FC, Abessa DMS (2018) Developing a protocol whole sediment toxicity testing with the polychaete Armandia agilis. Ecotoxicol Environ Contam 13:85–97.  https://doi.org/10.5132/eec.2018.02.11 Google Scholar
  23. Sandrini JZ, Lima JV, Regoli F et al (2008) Antioxidant responses in the nereidid Laeonereis acuta (Annelida, Polychaeta) after cadmium exposure. Ecotoxicol Environ Safe 70:115–120CrossRefGoogle Scholar
  24. Solé M, Kopecka-Pilarczyk J, Blasco J (2009) Pollution biomarkers in two estuarine invertebrates, Nereis diversicolor and Scrobicularia plana, from a Marsh ecosystem in SW Spain. Environ Int 35:523–531CrossRefGoogle Scholar
  25. Stegeman JJ, Livingstone DR (1998) Forms and functions of cytochrome P450. Comp Biochem Phys C 121:1–3Google Scholar
  26. Ugland KI, Bjørgesæter A, Bakke T, Fredheim B, Gray JS (2008) Assessment of environmental stress with a biological index based on opportunistic species. J Exp Mar Biol Ecol 366:169–174CrossRefGoogle Scholar
  27. UNEP (United Nations Environment Programme) (1992) Determinations of petroleum hydrocarbons in sediments. Reference methods for marine pollution studies. http://www.ais.unwater.org/ais/aiscm/getprojectdoc.php?docid=3936. Accessed 20 July 2018
  28. USEPA (United States Environmental Protection Agency) (1996) Method 3050B: Acid digestion of sediments, sludges, and soils. Washington, DCGoogle Scholar
  29. Won EJ, Rhee JS, Kim RO et al (2012) Susceptibility to oxidative stress and modulated expression of antioxidant genes in the copper-exposed polychaete Perinereis nuntia. Comp Biochem Phys C 155:344–351Google Scholar
  30. Yang M, Zhang X (2013) Comparative Developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environ Sci Technol 47:10868–10876CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Renan Vandre da Silva Toscano Saes
    • 1
  • Lucas Buruaem Moreira
    • 1
    • 2
    Email author
  • Tiago Farias Peres
    • 1
  • Satie Taniguchi
    • 3
  • Marcia Caruso Bícego
    • 3
  • Rozane Valente Marins
    • 1
  • Denis Moledo de Souza Abessa
    • 1
    • 2
  1. 1.Instituto de Ciências do MarUniversidade Federal do Ceará (UFC), Meireles – FortalezaCearaBrazil
  2. 2.Núcleo de Estudos em Poluição e Ecotoxicologia AquáticaUniversidade Estadual Paulista (UNESP)Sao PauloBrazil
  3. 3.Instituto OceanográficoUniversidade de São Paulo (USP)Sao PauloBrazil

Personalised recommendations