Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings

  • Ming HouEmail author
  • Mingyuan Li
  • Xinhan Yang
  • Renbing Pan


The heavy metal pollution in ecosystems is of increasing global concern. This study investigated firstly the responses of phytochelatins (PCs), glutathione (GSH) and other nonprotein thiols (NPT) in maize seedlings under vanadium (V), mercury (Hg) or their combined stress. With V or V–Hg combined stress, the contents of PCs, GSH and NPT in shoots and roots both increased with increasing the V stress level, and reached the maximum when the V stress level was 5 mg/L. Accumulation of V in all organs of maize seedlings was in sequence as follows: roots ≫ shoots, while Hg inhibited the accumulation of V. Results show that the root of plant has stronger tolerance to V, and the low V stress level can promote the synthesis of thiol groups to reduce the toxicity of Hg for plants.


Maize seedlings Accumulation Nonprotein thiol Glutathione Phytochelatins 



Financial support from National Natural Science Foundation of China (41561077; 41161076) and the Natural Science Foundation of Guangxi (2015GXNSFFA139005) is gratefully acknowledged.


  1. Arnetoli M, Vooijs R, ten Bookum W, Galardi F, Gonnelli C, Gabbrielli R, Schat H, Verkleij JA (2008) Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration. Environ Pollut 152:585–591CrossRefGoogle Scholar
  2. Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297CrossRefGoogle Scholar
  3. Boulassel B, Sadeg N, Roussel O, Perrin M, Belhadj-Tahar H (2011) Fatal poisoning by vanadium. Forensic Sci Int 206:e79–e81CrossRefGoogle Scholar
  4. Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9CrossRefGoogle Scholar
  5. Gupta DK, Huang HG, Yang XE, Razafindrabe BH, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444CrossRefGoogle Scholar
  6. Hou M, Hu C, Xiong L, Lu C (2013) Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis. Microchem J 110:575–578CrossRefGoogle Scholar
  7. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175CrossRefGoogle Scholar
  8. Keltjens WG, van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize Seedlings (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126CrossRefGoogle Scholar
  9. Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581CrossRefGoogle Scholar
  10. Lazaridis NK, Jekel M, Zouboulis AI (2003) Removal of Cr(VI), Mo(VI), and V(V) ions from single metal aqueous solutions by sorption or nanofiltration. Sep Sci Technol 38:2201–2219CrossRefGoogle Scholar
  11. Lemos Batista B, Nigar M, Mestrot A, Alves Rocha B, Barbosa Júnior F, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479CrossRefGoogle Scholar
  12. Li T, Di Z, Islam E, Jiang H, Yang X (2011) Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. J Hazard Mater 185:818–823CrossRefGoogle Scholar
  13. Lu CM, Chau CW, Zhang JH (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis—assessment by chlorophyll fluorescence analysis. Chemosphere 41:191–196CrossRefGoogle Scholar
  14. Lyubenova L, Pongrac P, Vogel-Mikuš K, Kukec Mezek G, Vavpetič P, Grlj N, Kump P, Nečemer M, Regvar M, Pelicon P, Schröder P (2012) Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Metallomics 4:333–341CrossRefGoogle Scholar
  15. Majid NA, Phang IC, Darnis DS (2017) Characteristics of Pelargonium radula as a mercury bioindicator for safety assessment of drinking water. Environ Sci Pollut Res Int 24:22827–22838CrossRefGoogle Scholar
  16. Olness A, Nelsen T, Rinke J, Voorhees WB (2000) Ionic ratios and crop performance. I. Vanadate and phosphate on soybean. J Agron Crop Sci 185:145–151CrossRefGoogle Scholar
  17. Olness A, Palmquist D, Rinke J (2001) Ionic ratios and crop performance: II. Effects of interactions amongst vanadium, phosphorus, magnesium and calcium on soybean yield. J Agron Crop Sci 187:47–52CrossRefGoogle Scholar
  18. Olness A, Archer DW, Gesch RW, Rinke J (2002) Resin-extractable phosphorus, vanadium, calcium and magnesium as factors in maize (Zea mays L.) yield. J Agron Crop Sci 188:94–101CrossRefGoogle Scholar
  19. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422CrossRefGoogle Scholar
  20. Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, Geng M, Hussain S (2015) Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicol Environ Saf 122:528–536CrossRefGoogle Scholar
  21. Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS, Wicker T, Martinoia E (2014) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201CrossRefGoogle Scholar
  22. Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Environ Toxicol 20:195–201CrossRefGoogle Scholar
  23. Tian L, Yang J, Alewell C, Huang JH (2014) Speciation of vanadium in Chinese cabbage (Brassica rapa L.) and soils in response to different levels of vanadium in soils and cabbage growth. Chemosphere 111:89–95CrossRefGoogle Scholar
  24. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759CrossRefGoogle Scholar
  25. Wang JF, Liu Z (1999) Effect of vanadium on the growth of soybean seedlings. Plant Soil 216:47–51CrossRefGoogle Scholar
  26. Weng BS, Xie XY, Weiss DJ, Liu JC, Lu HL, Yan CL (2012) Kandelia obovata (S, L.) Yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools. Mar Pollut Bull 64:2453–2460CrossRefGoogle Scholar
  27. Wójcik M, Pawlikowska-Pawlȩga B, Tukiendorf A (2009) Physiological and ultrastructural changes in Arabidopsis thaliana as affected by changed GSH level and Cu excess. Russ J Plant Physiol 56:820–829CrossRefGoogle Scholar
  28. Yang J, Wang M, Jia Y, Gou M, Zeyer J (2017a) Toxicity of vanadium in soil on soybean at different growth stages. Environ Pollut 231:48–58CrossRefGoogle Scholar
  29. Yang J, Teng Y, Wu J, Chen H, Wang G, Song L, Yue W, Zuo R, Zhai Y (2017b) Current status and associated human health risk of vanadium in soil in China. Chemosphere 171:635–643CrossRefGoogle Scholar
  30. Zhan FD, Li B, Jiang M, Qin L, Wang JX, He YM, Li Y (2017) Effects of a root-colonized dark septate endophyte on the glutathione metabolism in maize plants under cadmium stress. J Plant Interact 12:421–428CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ming Hou
    • 1
    Email author
  • Mingyuan Li
    • 1
  • Xinhan Yang
    • 1
  • Renbing Pan
    • 1
  1. 1.College of Chemistry and BioengineeringGuilin University of TechnologyGuilinChina

Personalised recommendations