Advertisement

Understanding Mercury Cycling in Tibetan Glacierized Mountain Environment: Recent Progress and Remaining Gaps

  • Qianggong Zhang
  • Xuejun Sun
  • Shiwei Sun
  • Xiufeng Yin
  • Jie Huang
  • Zhiyuan Cong
  • Shichang Kang
Focused Review

Abstract

Glacierized mountain environments can preserve and release mercury (Hg) and play an important role in regional Hg cycling. In the Tibetan Plateau (TP), most glaciers have been retreating at unprecedented rate in recent decades, acting as one of the most active factors in regional hydrological cycling. In this mini-review, we summarized recent studies on Hg distribution, transport, and accumulation in Tibetan glacierized environments. We highlight that melting glacier may represent a stimulator that exports Hg to glacier-fed ecosystems. We identified major knowledge gaps and proposed future research needs with several emphases, including quantifying Hg in glacier ablation zone, depicting Hg transport and transformation in glacial rivers during spring melt season, and better constraining glacier-export Hg and its environmental risks to the downstream. Besides, Hg isotopic technical, passive sampling and hydrological transport model should be utilized to improve the understanding of Hg cycling in high mountain regions in the TP.

Keywords

Mercury Glacierized mountain environment Tibetan Plateau Research progress 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41671074, 41761144078, 41630754), the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA20040502). Q.G. Zhang acknowledges financial support from the Youth Innovation Promotion Association of CAS (Grant No. 2016070).

Supplementary material

128_2019_2541_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 KB)

References

  1. AMAP. Mercury in the Arctic. Arctic Monitoring and Assessment Programme 2011Google Scholar
  2. Bhatia MP, Das SB, Xu L, Charette MA, Wadham JL, Kujawinski EB (2013a) Organic carbon export from the Greenland ice sheet. Geochim Cosmochim Acta 109:329–344CrossRefGoogle Scholar
  3. Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA (2013b) Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat Geosci 6:274CrossRefGoogle Scholar
  4. Blais JM, Schindler DW, Muir DC, Sharp M, Donald D, Lafreniere M et al (2001) Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. AMBIO: J Hum Environ 30:410–415CrossRefGoogle Scholar
  5. Bogdal C, Schmid P, Zennegg M, Anselmetti FS, Scheringer M, Hungerbühler K (2009) Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environ Sci Technol 43:8173–8177CrossRefGoogle Scholar
  6. Bogdal C, Nikolic D, Lüthi M, Schenker U, Scheringer M, Hungerbühler K (2010) Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding. Environ Sci Technol 44:4063–4069.  https://doi.org/10.1021/es903007h CrossRefGoogle Scholar
  7. Brigham ME, Wentz DA, Aiken GR, Krabbenhoft DP (2009) Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ Sci Technol 43:2720–2725CrossRefGoogle Scholar
  8. Brooks S, Arimoto R, Lindberg S, Southworth G (2008) Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial. Atmos Environ 42:2877–2884CrossRefGoogle Scholar
  9. Brun F, Berthier E, Wagnon P, Kaab A, Treichler D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat Geosci 10:668–673CrossRefGoogle Scholar
  10. Chen D, Xu B, Yao T, Guo Z, Cui P, Chen F et al (2015) Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin Sci Bull 60:3025–3035Google Scholar
  11. Dommergue A, Ferrari CP, Gauchard PA, Boutron CF, Poissant L, Pilote M et al (2003)The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys Res Lett.  https://doi.org/10.1029/2003GL017308 Google Scholar
  12. Dommergue A, Larose C, Faïn X, Clarisse O, Foucher D, Hintelmann H et al (2010) Deposition of mercury species in the Ny-Alesund area (79 degrees N) and their transfer during snowmelt. Environ Sci Technol 44:901–907CrossRefGoogle Scholar
  13. Durnford D, Dastoor A (2011) The behavior of mercury in the cryosphere: a review of what we know from observations. J Geophys Res: Atmos.  https://doi.org/10.1029/2010JD014809 Google Scholar
  14. Durnford D, Dastoor AP, Steen AO, Berg T, Ryzhkov A, Figueras-Nieto D et al (2012) How relevant is the deposition of mercury onto snowpacks?—Part 1: a statistical study on the impact of environmental factors. Atmos Chem Phys 12:9221–9249CrossRefGoogle Scholar
  15. Faïn X, Grangeon S, Bahlmann E, Fritsche J, Obrist D, Dommergue A et al (2007) Diurnal production of gaseous mercury in the alpine snowpack before snowmelt. J Geophys Res: Atmos.  https://doi.org/10.1029/2007JD008520 Google Scholar
  16. Feng X, Meng B, Yan H, Fu X, Yao H, Shang L (2018) Bioaccumulation of mercury in aquatic food chains. Biogeochemical cycle of mercury in reservoir systems in Wujiang River Basin, Southwest China. Springer, Singapore, pp 339–389Google Scholar
  17. Fisher JA, Jacob DJ, Soerensen AL, Amos HM, Steffen A, Sunderland EM (2012) Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nat Geosci 5:499CrossRefGoogle Scholar
  18. Grinsted A (2013) An estimate of global glacier volume. Cryosphere 7:141–151CrossRefGoogle Scholar
  19. Gustin MS, Amos HM, Huang J, Miller MB, Heidecorn K (2015) Measuring and modeling mercury in the atmosphere: a critical review. Atmos Chem Phys 15:5697–5713CrossRefGoogle Scholar
  20. Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ et al (2014) Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun 5:3929CrossRefGoogle Scholar
  21. Huang J, Kang S, Guo J, Zhang Q, Xu J, Jenkins MG et al (2012) Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Sci Total Environ 429:223–230CrossRefGoogle Scholar
  22. Huang J, Kang S, Guo J, Sillanpää M, Zhang Q, Qin X et al (2014) Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmos Environ 96:27–36CrossRefGoogle Scholar
  23. Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS, Clague JJ et al (2017) Toward mountains without permanent snow and ice. Earth’s Future 5:418–435CrossRefGoogle Scholar
  24. Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Sci 328:1382–1385CrossRefGoogle Scholar
  25. Kang S, Xu Y, You Q, Flügel W-A, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5:015101CrossRefGoogle Scholar
  26. Kang S, Huang J, Wang F, Zhang Q, Zhang Y, Li C et al (2016) Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environ Sci Technol 50:2859–2869CrossRefGoogle Scholar
  27. Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv Geophys 32:519–535CrossRefGoogle Scholar
  28. Li B, Yu Z, Liang Z, Acharya K (2014) Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Glob Planet Change 118:69–84CrossRefGoogle Scholar
  29. Li C, Zhang Q, Kang S, Liu Y, Huang J, Liu X et al (2015) Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environ Sci Pollut Res 22:12490–12500CrossRefGoogle Scholar
  30. Loewen M, Kang S, Armstrong D, Zhang Q, Tomy G, Wang F (2007) Atmospheric transport of mercury to the Tibetan Plateau. Environ Sci Technol 41:7632–7638CrossRefGoogle Scholar
  31. Ma J, Hung H, Tian C, Kallenborn R (2011) Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat Climate Change 1:255CrossRefGoogle Scholar
  32. Mei L, Wang X, Feng X, Luo J (2016) Spatial distribution and source /sink characteristic of mercury in the water samples from the Mt. Gongga area in the Tibetan Plateau. Environ Chem 35:1549–1556Google Scholar
  33. Mitchell CP, Branfireun BA, Kolka RK (2008) Total mercury and methylmercury dynamics in upland–peatland watersheds during snowmelt. Biogeochem 90:225–241CrossRefGoogle Scholar
  34. Morselli M, Semplice M, Villa S, Di Guardo A (2014) Evaluating the temporal variability of concentrations of POPs in a glacier-fed stream food chain using a combined modeling approach. Sci Total Environ 493:571–579CrossRefGoogle Scholar
  35. Nagorski SA, Engstrom DR, Hudson JP, Krabbenhoft DP, Hood E, DeWild JF et al (2014) Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon. Environ Pollut 184:62–72CrossRefGoogle Scholar
  36. Paudyal R, Kang S, Huang J, Tripathee L, Zhang Q, Li X et al (2017) Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Sci Total Environ 599:2046–2053CrossRefGoogle Scholar
  37. Qiu J (2008) China: the third pole. Nat News 454:393–396CrossRefGoogle Scholar
  38. Raiswell R (2013) Biogeochemistry: rusty meltwaters. Nat Geosci 6:251CrossRefGoogle Scholar
  39. Schroeder W, Anlauf K, Barrie L, Lu J, Steffen A, Schneeberger D et al (1998) Arctic springtime depletion of mercury. Nature 394:331CrossRefGoogle Scholar
  40. Schuster PF, Striegl RG, Aiken GR, Krabbenhoft DP, Dewild JF, Butler K et al (2011) Mercury export from the Yukon River Basin and potential response to a changing climate. Environ Sci Technol 45:9262–9267CrossRefGoogle Scholar
  41. Sharma BM, Nizzetto L, Bharat GK, Tayal S, Melymuk L, Sáňka O et al (2015) Melting Himalayan glaciers contaminated by legacy atmospheric depositions are important sources of PCBs and high-molecular-weight PAHs for the Ganges floodplain during dry periods. Environ Pollut 206:588–596CrossRefGoogle Scholar
  42. Stern GA, Macdonald RW, Outridge PM, Wilson S, Chetelat J, Cole A et al (2012) How does climate change influence arctic mercury? Sci Total Environ 414:22–42CrossRefGoogle Scholar
  43. Stocker T, Dahe Q, Plattner G (2013) Working group I contribution to the IPCC fifth assessment report climate change 2013, the physical science basis. Final draft underlying scientific-technical assessment IPCC, StockholmGoogle Scholar
  44. Sun S, Kang S, Huang J, Li C, Guo J, Zhang Q et al (2016) Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China. J Environ Sci 44:213–223CrossRefGoogle Scholar
  45. Sun X, Wang K, Kang S, Guo J, Zhang G, Huang J et al (2017) The role of melting alpine glaciers in mercury export and transport: an intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environ Pollut 220:936–945CrossRefGoogle Scholar
  46. Sun S, Kang S, Guo J, Zhang Q, Paudyal R, Sun X et al (2018a) Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. J Environ Sci 68:130–142CrossRefGoogle Scholar
  47. Sun X, Zhang Q, Kang S, Guo J, Li X, Yu Z et al (2018b) Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau. Sci Total Environ 631:270–278CrossRefGoogle Scholar
  48. Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257:784–787CrossRefGoogle Scholar
  49. Wang X-P, Yao T-D, Wang P-L (2008) The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas. Sci Total Environ 394:134–143CrossRefGoogle Scholar
  50. Wang X, Luo J, Yin R, Yuan W, Lin CJ, Sommar J et al (2017) Using mercury isotopes to understand mercury accumulation in the montane forest floor of the Eastern Tibetan Plateau. Environ Sci Technol 51:801–809CrossRefGoogle Scholar
  51. Williams SJ (2013) Sea-Level rise implications for coastal regions. J Coast Res 63:184–196CrossRefGoogle Scholar
  52. Wu X, Davie-Martin CL, Steinlin C, Hageman KJ, Cullen NJ, Bogdal C (2017) Understanding and predicting the fate of semivolatile organic pesticides in a glacier-fed lake using a multimedia chemical fate model. Environ Sci Technol 51:11752–11760CrossRefGoogle Scholar
  53. Xu X, Zhang Q, Wang WX (2016) Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: implications for using mercury stable isotopes as source tracers. Sci Rep 6:25394CrossRefGoogle Scholar
  54. Yang R, Jing C, Zhang Q, Wang Z, Wang Y, Li Y et al (2011) Polybrominated diphenyl ethers (PBDEs) and mercury in fish from lakes of the Tibetan Plateau. Chemosphere 83:862–867CrossRefGoogle Scholar
  55. Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91CrossRefGoogle Scholar
  56. Yao T, Thompson LG, Mosbrugger V, Zhang F, Ma Y, Luo T et al (2012) Third pole environment (TPE). Environ Dev 3:52–64CrossRefGoogle Scholar
  57. Yin R, Feng X, Zhang J, Pan K, Wang W, Li X (2016) Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere 147:173–179CrossRefGoogle Scholar
  58. Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762CrossRefGoogle Scholar
  59. Zhang Q, Kang S, Wang F, Li C, Xu Y (2008) Major ion geochemistry of Nam Co Lake and its sources, Tibetan Plateau. Aquat Geochem 14:321–336CrossRefGoogle Scholar
  60. Zhang Q, Huang J, Wang F, Mark L, Xu J, Armstrong D et al (2012) Mercury distribution and deposition in glacier snow over western China. Environ Sci Technol 46:5404–5413CrossRefGoogle Scholar
  61. Zhang Q, Pan K, Kang S, Zhu A, Wang WX (2014) Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environ Sci Technol 48:5220–5228CrossRefGoogle Scholar
  62. Zhang Q, Kang S, Gabrielli P, Loewen M, Schwikowski M (2015) Vanishing high mountain glacial archives: challenges and perspectives. ACS Publications, Washington, DC, pp 5404–9500Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of Sciences (CAS)BeijingChina
  2. 2.State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  4. 4.University of CASBeijingChina

Personalised recommendations