Advertisement

Distribution of Al, Cd, Cu, Fe, Mn, Pb and Zn in Liver, Gills and Muscle of Early Life Stages of Atlantic Salmon (Salmo salar)

  • María Gabriela Lobos
  • Claudio Sáez
  • Alejandra Chavarría
  • Maritza Sepúlveda
  • Patricia Díaz
  • Hernán GaeteEmail author
Article

Abstract

The aim of this study was to determine metal distribution in different tissues in early life stages of Atlantic salmon. The concentrations of the metals Al, Cd, Cu, Fe, Mn, Pb and Zn in liver, gills, muscle of fish and water from a salmon farm in the Region de los Lagos of southern Chile were determined. Results show that Cd and Pb had the lowest concentrations, while Zn the highest concentration, followed by Cu, Fe and Mn. Cu and Fe had the highest concentrations in liver, while Mn and Zn were the highest in gills. Cu and Fe in liver were higher in pre-smolts than in fingerlings. Cu had the highest bioaccumulation factor in pre-smolts, both in liver and gills. In conclusion the metals tend to bioaccumulate selectively in different tissues of Salmo salar. Liver is the most relevant for Cu and Fe, and liver and gills for Zn.

Keywords

Bioaccumulation Metals Environmental risk Fish 

Notes

Acknowledgements

The study was funded by Conicyt Proyect Fondecyt No. 1150855, Director Dra. María Gabriela Lobos.

References

  1. Ayer N, Martin S, Dwyer RL, Gace L, Laurin L (2016) Environmental performance of copper-alloy net-pens: life cycle assessment of Atlantic salmon grow-out in copper-alloy and nylon net-pens. Aquaculture 453:93–103CrossRefGoogle Scholar
  2. Beg MU, Al-Jandal N, Al-Subiai S, Karam Q, Husain S, Butt SA, Ali A, Al-Hasan E, Al-Dufaileej S, Al-Husaini M (2015) Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits’ marine area. Mar Pollut Bull 100:662–672CrossRefGoogle Scholar
  3. Conama (2004) Guía conama para el establecimiento de las normas secundarias de calidad ambiental para aguas continentales superficiales y marinas. Ministerio del Medio Ambiente de ChileGoogle Scholar
  4. De Jonge M, Belpaire C, Van Thuyne G, Breine J, Bervoets L (2015) Temporal distribution of accum ulated metal mixtures in two feral fish species and the relation with condition metrics and community structure. Environ Pollut 197:43–54.  https://doi.org/10.1016/j.envpol.2014.11.024 CrossRefGoogle Scholar
  5. FAO (2014) The state of world 696 fisheries and aquaculture. http://www.fao.org/fishery/sofia/enN. Accessed 10 Aug 2015
  6. Gaete H, Carvajal D, Mukarker M, Lobos G, Guerra R (2014) Genotoxicidad de las aguas en desembocaduras de ríos y estero de sobre los peces Mugil cephalus (Linnaeus 1758) y Odontesthes brevianalis (Günther 1880). Hidrobiológica 24(3):167–174Google Scholar
  7. Gaete H, Moyano N, Jara C, Carrasco R, Lobos G, Hidalgo M (2016) Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile. Environ Monit Assess 188:25.  https://doi.org/10.1007/s1066 CrossRefGoogle Scholar
  8. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322CrossRefGoogle Scholar
  9. Kraemer LD, Campbell P, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138(2):324–337CrossRefGoogle Scholar
  10. Lundebye AK, Lock EJ, Rasinger JD, Nostbakken OJ, Hannisdal R, Karlsbakk E, Wennevik V, Madhun AS, Madsen L, Graff IE, Ornsrud R (2017) Lower levels of persistent organic pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). Environ Res 155:49–59CrossRefGoogle Scholar
  11. Mahrosh U, Rosseland BO, Salbu B, Teien HCh (2017) Single and multiple stressor effect of road deicers and Cu on Atlantic salmon (Salmo salar) alevins from hatching till swim-up. J Environ Sci.  https://doi.org/10.1016/j.jes.2016.10.021 Google Scholar
  12. Meng F, Li M, Tao Z, Yuan L, Song M, Ren Q, Xin X, Meng Q, Wang R (2016) Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus. Aquac Rep 3:131–135CrossRefGoogle Scholar
  13. Niva Chile (2009) Calidad de Agua para el cultivo de Smolts en Chile. Ase Atland, Vilhelm Bjrkness (eds). Niva Chile, ChileGoogle Scholar
  14. Perrault J, Buchweitz J, Lrehne AF (2014) Essential, trace and toxic element concentrations in the liver of the world’s largest bony fish, the ocean sunfish (Mola mola). Mar Pollut Bull 79:348–353CrossRefGoogle Scholar
  15. Rajeshkumar S, Li X (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxic Rep 5:288–295Google Scholar
  16. Reyne O (2008) La industria piscícola en la Región de La Araucanía: diagnóstico, problemáticas y perspectivas para su desarrollo. Grado de Licenciado en Ciencias de la Acuicultura, Universidad Católica de Temuco, TemucoGoogle Scholar
  17. Stankevičiūtė M, Sauliutė G, Svecevičius G, Kazlauskienė N, Baršienė J (2017) Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence. Ecotoxicology 26:1051–1064CrossRefGoogle Scholar
  18. Subpesca (2014) Balance de Gestión del Sector Acuicultor Nacional para Periodo 2010–2013. Subsecretaría de pesca y acuicultura. Gobierno de Chile. http://www.subpesca.cl/portal/618/articles-82688_documento.pdf
  19. Subpesca (2017) Informe sectorial de pesca y acuicultura.Subsecretaría de pesca y acuicultura. Gobierno de Chile. http://www.subpesca.cl/portal/618/articles-98547_documento.pdf
  20. Tao Y, Yuan Z, Xiaona H, Wei M (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf 81:55–64.  https://doi.org/10.1016/j.ecoenv.2012.04.014 CrossRefGoogle Scholar
  21. Varol M, Raşit Sünbül M (2017) Comparison of heavy metal levels of farmed and escaped farmed rainbow trout and health risk assessment associated with their consumption. Environ Sci Pollut Res 24(29):23114–23124CrossRefGoogle Scholar
  22. Vega R, Zamorano J, Encina F, Mardones A (2015) Efecto del calcio sobre la toxicidad aguda de aluminio en alevines de trucha. Lat Am J Aquat Res 43(2):337–343CrossRefGoogle Scholar
  23. Wang X, Wang WX (2016) Homeostatic regulation of copper in a marine fish simulated by a physiologically based pharmacokinetic model. Environ Pollut 218:1245–1254CrossRefGoogle Scholar
  24. Yilmaz A (2003) Levels of heavy metals (Fe, Cu, Ni, Cr, Pb, and Zn) in tissue of Mugil cephalus and Trachurus mediterraneus from Iskenderun Bay, Turkey. Environ Res 92:277–281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • María Gabriela Lobos
    • 1
    • 3
  • Claudio Sáez
    • 4
  • Alejandra Chavarría
    • 1
  • Maritza Sepúlveda
    • 2
    • 3
    • 5
  • Patricia Díaz
    • 1
  • Hernán Gaete
    • 3
    • 6
    Email author
  1. 1.Instituto de Química y BioquímicaFacultad de Ciencias, Universidad de ValparaísoValparaisoChile
  2. 2.Instituto de Biología Facultad de Ciencias, Universidad de ValparaísoValparaisoChile
  3. 3.Centro de Investigación y Gestión de Recursos Naturales (CIGREN)Universidad de ValparaísoValparaisoChile
  4. 4.Laboratory of Coastal Environmental Research, Centro de Estudios Avanzados (CEA)Universidad de Playa AnchaViña del MarChile
  5. 5.Núcleo Milenio INVASALConcepciónChile
  6. 6.Escuela de Ingeniería en Medioambiente, Facultad de IngenieríaUniversidad de ValparaísoValparaísoChile

Personalised recommendations