DNA Damage and Immunological Responses in the Whiteleg Shrimp (Litopenaeus vannamei) Exposed to Sublethal Levels of Mercury

  • Sarahi Roos-Muñoz
  • Domenico Voltolina
  • Marisela Aguilar-Juárez
  • Selene Abad-Rosales
  • Juan C. Bautista-Covarrubias
  • M. Isaura Bañuelos-Vargas
  • Martín F. Soto-Jiménez
  • Martín G. Frías-EspericuetaEmail author


Litopenaeus vannamei juveniles were exposed to sublethal levels (2.33–18.03 µg/L) of inorganic mercury. Time of exposure (0, 24 and 168 h) was a source of DNA damage. Mean comet tail length not changed significantly with mercury concentrations and exposure time, and this parameter cannot be used to assess DNA damage in this shrimp. Total hemocyte count showed a trend to decrease according to the increase of mercury concentrations, although no significant difference between treatments with mercury was observed. The phenoloxidase (PO) activity was not influenced by the time of exposure. At the end of the experiment, the PO in organisms exposed to 18.03 µg/L was different from the control. The time of exposure has a more important influence in superoxide dismutase than the concentration of mercury. According to these results, a suitable criterion of water quality for long-term exposure of L. vannamei should be lower than 2 µg/L of mercury.


Mercury Litopenaeus vannamei Genotoxicity Immune responses Hemocytes 



This work was supported by a CONACYT scholarship to the first author and by grants PROFAPI UAS (2015/004, 2015/103), PROMEP UAS (PTC-105.DSA/103.5/14/10808), PRODEP (CANE year 3) and CONACYT INFRA 2012-01-188029.


  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. CrossRefGoogle Scholar
  2. Calderón-Segura ME, Gómez-Arroyo S, Molina-Alvarez B, Villalobos-Pietrini R, Calderón-Ezquerro C, Cortés-Eslava J, Valencia-Quintana PR, López-González L, Zúñiga-Reyes R, Sánchez-Rincón J (2007) Metabolic activation of herbicide products by Vicia faba detected in human peripheral lymphocytes using alkaline single cell gel electrophoresis. Toxicol Vitro 21:1143–1154. CrossRefGoogle Scholar
  3. Conover WJ (2012) The rank transformation-an easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistics courses. WIREs Comput Stat 4:432–438. CrossRefGoogle Scholar
  4. Costa AM, Buglione CC, Bezerra FL, Martins PCC, Barracco MA (2009) Immune assessment of farm-reared Penaeus vannamei shrimp naturally infected by IMNV in NE Brazil. Aquaculture 291:141–146. CrossRefGoogle Scholar
  5. Delgado-Alvarez CG, Ruelas-Inzunza J, Osuna-López JI, Voltolina D, Frías-Espericueta MG (2015) Mercury content and their risk assessment in farmed shrimp Litopenaeus vannamei from NW Mexico. Chemosphere 119:1015–1020. CrossRefGoogle Scholar
  6. Di Donato G, De Matthaeis E, Ronci L, Setini A (2016) Genotoxicity biomarkers in the amphipod Gammarus elvirae exposed in vivo to mercury and lead, and basal levels of DNA damage in two cell types. Chem Ecol 32:1–15. CrossRefGoogle Scholar
  7. EPA (2015) Recommended water quality criteria. Current water quality criteria. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  8. Fang Y, Yang H, Baozhong L (2012) Tissue-specific response of metallothionein and superoxide dismutase in the clam Mactra veneriformis under sublethal mercury exposure. Ecotoxicology 21:1593–1602. CrossRefGoogle Scholar
  9. Gagnaire B, Thomas-Guyon H, Renault T (2004) In vitro effects of cadmium and mercury on pacific oyster Crassostrea gigas (Thunberg), haemocytes. Fish Shellfish Immunol 16:501–512. CrossRefGoogle Scholar
  10. Hernández-López J, Gollas-Galván T, Vargas-Albores F (1996) Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comp Biochem Physiol 113:61–66. CrossRefGoogle Scholar
  11. Jose S, Jayesh P, Mohandas A, Philip R, Singh ISB (2011) Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. Mar Environ Res 71:169–177. CrossRefGoogle Scholar
  12. Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394. CrossRefGoogle Scholar
  13. Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in crustacea. Aquaculture 191:121–131. CrossRefGoogle Scholar
  14. Lee R, Kim GB, Maruya KA, Steinert SA, Osahima Y (2000) DNA strand breaks (comet assay) and embryo development effects in grass shrimp (Palaemonetes pugio) embryos after exposure to genotoxicants. Mar Environ Res 50:553–557. CrossRefGoogle Scholar
  15. Lorenzon S, Francese M, Smith VJ, Ferrero EA (2001) Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans. Fish Shellfish Immunol 11:459–472. CrossRefGoogle Scholar
  16. Lovell DP (2016) Statistical analysis of comet assay data. In: Dhawan A, Anderson D (eds) The comet assay in toxicology. Royal Society of Chemistry, London, pp 424–450Google Scholar
  17. Maiz-Larralde P (2008) Final-inventario Nacional de Liberaciones de Mercurio-México 2004. Instituto Nacional de Ecología, SEMARNAT, MéxicoGoogle Scholar
  18. Miranda A, Voltolina D, Frías-Espericueta MG, Izaguirre-Fierro G, Rivas-Vega ME (2009) Budget and discharges of nutrient to the Gulf of California of a semi-intensive shrimp farm (NW Mexico). Hidrobiológica 19:43–48Google Scholar
  19. Nersesyan A, Kundi M, Waldherr M, Setayesh T, Mišík M, Wultsch G, Filipic M, Mazzaron Barcelos GR, Knasmueller S (2016) Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium. Mutat Res 770:119–139. CrossRefGoogle Scholar
  20. Ono A, Torigoe H, Tanaka Y, Okamoto I (2011) Binding of metal ions by pyrimide base pairs in DHNAQ duplexes. Chem Soc Rev 40:5855–5866CrossRefGoogle Scholar
  21. Roos-Muñoz S, Abad-Rosales SM, Aguilar-Juárez M, Frías-Espericueta MG, Voltolina D (2018) Acute toxicity of Hg and nervous tissue damage in postlarvae and juveniles of Litopenaeus vannamei. Thalassas. CrossRefGoogle Scholar
  22. Singaram G, Harikrishnan T, Chen FY, Bo J, Giesy JP (2013) Modulation of immune-associated parameters and antioxidant responses in the crab (Scylla serrata) exposed to mercury. Chemosphere 90:917–928. CrossRefGoogle Scholar
  23. Truscott R, White KN (1990) The influence of metal and temperature stress on the immune system of crabs. Funct Ecol 4:55–461. CrossRefGoogle Scholar
  24. Wei K, Yang J (2016) Copper-induced oxidative damage to the prophenoloxidase-activating system in the freshwater crayfish Procambarus clarkii. Fish Shellfish Immunol 52:221–229. CrossRefGoogle Scholar
  25. Wyatt LH, Luz AL, Cao X, Maurer LL, Blawas AM, Aballay A, Pan WK, Meyer JN (2017) Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair 52:31–48. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sarahi Roos-Muñoz
    • 1
  • Domenico Voltolina
    • 2
  • Marisela Aguilar-Juárez
    • 3
  • Selene Abad-Rosales
    • 4
  • Juan C. Bautista-Covarrubias
    • 5
  • M. Isaura Bañuelos-Vargas
    • 3
  • Martín F. Soto-Jiménez
    • 6
  • Martín G. Frías-Espericueta
    • 3
    Email author return OK on get
  1. 1.Posgrado en Ciencias en Recursos AcuáticosUniversidad Autónoma de SinaloaMazatlánMexico
  2. 2.Centro de Investigaciones Biológicas del NoroesteLaboratorio UAS-CIBNORMazatlánMexico
  3. 3.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico
  4. 4.CIAD, Unidad MazatlánMazatlánMexico
  5. 5.Unidad Académica Escuela Nacional de Ingeniería PesqueraUniversidad Autónoma de NayaritSan BlasMexico
  6. 6.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMexico

Personalised recommendations