Advertisement

Comparison Between Two Submerged Macrophytes as Biomonitors of Trace Elements Related to Anthropogenic Activities in the Ctalamochita River, Argentina

  • Carlos A. HarguinteguyEmail author
  • Gustavo L. Gudiño
  • Daniela S. Arán
  • M. Luisa Pignata
  • Alicia Fernández-Cirelli
Article

Abstract

The temporal variation of As, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in surface waters and sediments, and trace element accumulation and physiological changes in the macrophytes Stuckenia filiformis and Potamogeton pusillus, were estimated in the Ctalamochita River, Argentina, both upstream and downstream of Río Tercero. Chromium, Fe, Pb and Zn in surface water were higher at the downstream site, while Cu and Mn were higher upstream. Chromium, Mn and Zn in S. filiformis correlated with concentrations observed in sediments, whereas only Zn did in water. In P. pusillus, As, Co, Cr, Ni, Pb and Zn correlated with concentrations in sediments. P. pusillus revealed greater variations in the photosynthetic pigments and malondialdehyde content in the site downstream of the city than those observed in S. filiformis. Therefore, P. pusillus has a greater potential use in monitoring studies in aquatic environments with ecological risk than S. filiformis.

Keywords

Metals Metalloid Photosynthetic pigments Malondialdehyde Stuckenia filiformis Potamogeton pusillus 

Notes

Acknowledgements

This work was supported by SECYT-UNC and ANPCyT (FONCyT PICT-2014-3474). The authors wish to acknowledge the assistance of CONICET, IMBIV and J Troncoso, and also Dr. Paul Hobson, native speaker, for revision of the manuscript.

References

  1. Arán DS, Harguinteguy CA, Fernandez-Cirelli A, Pignata ML (2017) Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater. Environ Sci Pollut Res 24:18295–18308CrossRefGoogle Scholar
  2. Argentine Republic (1991) National Law 24.051 and Regulatory Decree 831/93. http://servicios.infoleg.gob.ar/infolegInternet/anexos/0-4999/450/texact.htm. Accessed 25 May 2018
  3. Buffa EV, Ratto SE (2009) Contenido pseudototal de Cobre, Cinc, Hierro y Manganeso como estimador del fondo geoquímico en suelos de la Llanura Chaco-Pampeana de Córdoba, Argentina. Ciencia del suelo 27:139–147Google Scholar
  4. Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247:295–311CrossRefGoogle Scholar
  5. Cardwell A, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663CrossRefGoogle Scholar
  6. Di Rienzo JA, Guzman AW, Casanoves (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agr Biol Envir St 7:129–142CrossRefGoogle Scholar
  7. Doratto AKD (1986) Estudios edafogénicos y mineralógicos comparados de suelos desarrollados sobre diferentes rocas madres. Tesis Doctoral, Fac. Cs. Exactas Fís. y Nat. Univ. Nacional CórdobaGoogle Scholar
  8. Ehlers LJ, Luthy RG (2003) Peer reviewed: contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302ACrossRefGoogle Scholar
  9. Ferrat L, Pergent-Martini C, Roméo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat Toxicol 65:187–204CrossRefGoogle Scholar
  10. Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227CrossRefGoogle Scholar
  11. Guilizzoni P (1991) The role of heavy metals and toxic amterials in the physiological ecology of submersed macrophytes. Aquat Bot 41:87–109CrossRefGoogle Scholar
  12. Guzmán MC, de los Angeles Bistoni M, Tamagnini LM, González RD (2004) Recovery of Escherichia coli in fresh water fish, Jenynsia multidentata and Bryconamericus iheringi. Water Res 38:2368–2374CrossRefGoogle Scholar
  13. Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16CrossRefGoogle Scholar
  14. Harguinteguy CA, Fernández-Cirelli A, Pignata ML (2014) Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina). Microchem J 114:111–118CrossRefGoogle Scholar
  15. Harguinteguy CA, Pignata ML, Fernández-Cirelli A (2015) Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecol Eng 82:512–516CrossRefGoogle Scholar
  16. Harguinteguy CA, Cofré MN, Fernández-Cirelli A, Pignata ML (2016) The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. As potential bioindicators of a river contaminated by heavy metals. Microchem J 124:228–234CrossRefGoogle Scholar
  17. Haynes RR, Holm-Nielsen LB (2003) Potamogetonaceae. Flora Neotropica, vol. 85. New York Botanical Garden, New YorkGoogle Scholar
  18. Heredia OS, Fernández Cirelli A (2009) Trace elements distribution in soil, pore water and groundwater in Buenos Aires. Argent Geoderma 149:409–414CrossRefGoogle Scholar
  19. Hu JZ, Shi GX, Xu QS, Wang X, Yuan QH, Du KH (2007) Effects of Pb2 + on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physiol 54:414–419CrossRefGoogle Scholar
  20. Jackson L (1998) Paradigms of metal accumulation in rooted aquatic vascular plants. Sci Total Environ 219:223–231CrossRefGoogle Scholar
  21. Kamal M (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039CrossRefGoogle Scholar
  22. Kosugi H, Kojima T, Kikugawa K (1989) Thiobarbituric acid-reactive substances from peroxidized lipids. Lipids 24:873–881CrossRefGoogle Scholar
  23. Leung HM, Duzgoren-Aydin NS, Au CK, Krupanidhi S, Fung KY, Cheung KC, Wong YK, Peng XL, Ye ZH, Yung KKL, Tsui MTK (2017) Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ Sci Pollut R 24:9079–9088CrossRefGoogle Scholar
  24. Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117–1123CrossRefGoogle Scholar
  25. Megateli S, Semsari S, Couderchet M (2009) Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 72:1774–1780CrossRefGoogle Scholar
  26. Metwally A, Safronova VI, Belimov AA, Dietz K-J (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178Google Scholar
  27. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039CrossRefGoogle Scholar
  28. Monferrán MV, Garnero P, de los Angeles Bistoni M, Anbar AA, Gordon GW, Wunderlin DA (2016) From water to edible fish. Transfer of metals and metalloids in the San Roque Reservoir (Córdoba, Argentina). Implications associated with fish consumption. Ecol Indic 63:48–60CrossRefGoogle Scholar
  29. Nimptsch J, Wunderlin D, Dollan A, Pflugmacher S (2005) Antioxidant and biotransformation enzymes in as biomarkers of heavy metal exposure and eutrophication in Suquía River basin (Córdoba, Argentina). Chemosphere 61:147–157CrossRefGoogle Scholar
  30. NJDEP (2009) New Jersey Department of Environmental Protection - Ecological Screening Criteria. http://www.nj.gov/dep/srp/guidance/ecoscreening/esc_table.pdf. Accessed 25 May 2018
  31. NMS (2016) National Meteorological Service, Argentina. http://www.smn.gov.ar/. Accessed 25 May 2018
  32. Ozturk F, Duman F, Leblebici Z, Temizgul R (2010) Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot 69:167–174CrossRefGoogle Scholar
  33. Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392:22–29CrossRefGoogle Scholar
  34. Principe RE, Raffaini GB, Gualdoni CM, Oberto AM, Corigliano MC (2007) Do hydraulic units define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica 37:323–336CrossRefGoogle Scholar
  35. Rai U, Tripathi D, Vajpayee P, Pandey N, Ali M, K Gupta D (2003) Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus L. (Potamogetonaceae). Bull Environ Contam Toxicol 70:566–575CrossRefGoogle Scholar
  36. Shinn C, Dauba F, Grenouillet G, Guenard G, Lek S (2009) Temporal variation of heavy metal contamination in fish of the river lot in Southern France. Ecotoxicol Environ Saf 72:1957–1965CrossRefGoogle Scholar
  37. Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorphyll degradation. Physiol Plant 85:85–89CrossRefGoogle Scholar
  38. St-Cyr L, Cattaneo A, Chasse R, Fraikin CGJ (1997) Technical evaluation of monitoring methods using macrophytes, phytoplankton and periphyton to assess the impacts of mine effluents on the aquatic environment. Canada Centre for Mineral and Energy Technology, OttawaGoogle Scholar
  39. Upadhyay AK, Singh NK, Rai UN (2014) Comparative metal accumulation potential of Potamogeton pectinatus L. and Potamogeton crispus L.: Role of enzymatic and non-enzymatic antioxidants in tolerance and detoxification of metals. Aquat Bot 117:27–32CrossRefGoogle Scholar
  40. Verhofstad MJJM, Alirangues Núñez MM, Reichman EP, van Donk E, Lamers LPM, Bakker ES (2017) Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: roles of light, sediment nutrient levels, and propagule density. Aquat Bot 141:29–38CrossRefGoogle Scholar
  41. Wang Y, Yang Z, Shen Z, Tang Z, Niu J, Gao F (2011) Assessment of heavy metals in sediments from a typical catchment of the Yangtze River, China. Environ Monit Assess 172:407–417CrossRefGoogle Scholar
  42. Wintermans JFGM, De Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim Biophys Acta: Biophys Includ Photosyn 109:448–453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Multidisciplinary Institute of Plant Biology (IMBIV), CONICETCórdobaArgentina
  2. 2.Center Institute Transdisciplinary Water Studies (CETA)Buenos AiresArgentina

Personalised recommendations