Advertisement

Total Mercury in Plant Tissue from a Mining Landscape in Western Mexico

  • Verónica Osuna-Vallejo
  • Cuauhtémoc Sáenz-Romero
  • Luis Escalera-Vázquez
  • Erick de la Barrera
  • Roberto Lindig-Cisneros
Article

Abstract

Environmental impacts of mining activities are well known, particularly on-site degradation, but long term effects are less known. Mercury content from vegetation samples from a mine dump and surrounding forests was quantified for understanding the fate of this element in the local the environment. The study area, Tlalpujahua, Michoacán, México, has a mining history going back more than 400 years. Including gold and silver extraction by means of mercury amalgamation for 352 years (1554–1906). Mercury was present in all sampled materials. The highest values correspond to wood samples from the mine dump (13.84 ± 3.88 ppm), while wood samples from adjacent forests had 4.3 ± 2.4 ppm, almost twice as much as coniferous needles, shrub leaves and corn seeds (2.2 ± 0.34 ppm). The highest concentration was found for J. deppeana wood (16.05 ± 2.3 ppm). The capacity of accumulating mercury by Juniperus trees when growing on the mine dumps suggests that this species has a potential to be used for biosequestration purposes.

Keywords

Mercury Persistence Biomonitor Pinus 

Notes

Acknowledgements

Financial support was provided to RL-C trough UNAM, PAPIIT (IN-116218), and to V O-V through a posdoctoral scholarship by DGAPA-UNAM.

References

  1. Bradshaw AD (1997) Restoration of mine lands: using natural processes. Ecol Eng 8:225–269CrossRefGoogle Scholar
  2. Corona-Chávez P, Uribe-Salas AJ, Razo-Pérez N, Martínez-Medina M (2010) The impact of mining in the regional ecosystem: the mining district of El Oro and Tlalpujahua, Mexico. De Re Metallica 15:21–34Google Scholar
  3. Corona-Chávez PR, Maldonado YR, Ramos-Arroyo J, Robles-Camacho R, Lozano-SantaCruz M, Martínez-Medina M (2017) Geoquímica y mineralogía de los jales del distrito minero Tlalpujahua-El Oro, México, y sus implicaciones de impacto ambiental. Revista Mexicana de Ciencias Geológicas 34:250–273CrossRefGoogle Scholar
  4. Cortinas De Nava C, (2008) Manejo de los relaves o jales mineros. Instituto Nacional de Ecología (INE). Dirección General de Materiales, Residuos y Actividades Riesgosas del INE. http://www.ine.gob.mx. Accessed 15 Nov 2015.
  5. Eurachem Working Group (1998) A laboratory guide to method validation and related topics. In The fitness for purpose of analytical method, Edition 1.0–1998. LGC, Teddington, ISBN 0-948926-12-0Google Scholar
  6. Fernández-Martínez R, Larios I, Gómez-Pinilla B, Gómez-Mancebo S, López-Andrés J, Loredo A, Ordóñez IR (2015) Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 254:30–38CrossRefGoogle Scholar
  7. He J, Tan H, Sommar J, Xiao Z, Lindqvist O (1998) Mercury pollution in a mining area of Guizhou, China: fluxes over contaminated surfaces and concentrations in air, biological and geological samples. Toxicol Environ Chem 67:225–236CrossRefGoogle Scholar
  8. Hernández-Acosta E, Mondragón-Romero E, Cristobal-Acevedo D, Rubiños-Panta JE, Robledo-Santoyo E (2009) Vegetation, mining tailings and potentially toxic elements of a jal from Pachuca, Hidalgo, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente 15:109–114Google Scholar
  9. Hutnik RJ, McClenahen JR, Long RP, Davis DD (2014) Mercury accumulation in Pinus nigra (Austrian Pine). Northeastern Nat 21:529–540CrossRefGoogle Scholar
  10. INEGI (2010) Censo poblacional 2010, Censo Agrícola, Ganadero y Forestal 2007.. http://www.beta.inegi.org.mx/proyectos/ccpv/2010/. Accessed 15 Feb 2018
  11. Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollution 97:209–221Google Scholar
  12. López Domínguez MG (2009) Master’s degree thesis: Distribución y fitodisponibilidad de metales pesados (sb, hg, as) en los jales de la mina de antimonio de Wadley, estado de San Luis Potosí, posgrado Ciencias de la Tierra, UNAMGoogle Scholar
  13. Macías JL, Corona-Chávez P, Sanchéz-Núñez JM, Martínez-Medina M, Garduño-Monroy VH, Capra L, García-Tenorio F, Cisneros-Máximo G (2015) The 27 May 1937 catastrophic flow failure of gold tailings at Tlalpujahua, Michoacán, Mexico. Hazards Earth Syst Sci 15:1069–1085CrossRefGoogle Scholar
  14. Martínez-Medina M (2009) Masters degree thesis. Diagnóstico de Impacto Ambiental causado por la minería en l distrito minero de El Oro-Tlalpujahua mediante el uso de un Sistema de Información Geográfica (SIG). Universidad Michoacana de San Nicolás de Hidalgo. MexicoGoogle Scholar
  15. Parikh Y, Mahmoud S, Lallo J, Lang H (2015) Sample preparation method for mercury analysis in reagent chemicals by ICP-OES. Espectroscopy 30:8–17Google Scholar
  16. Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85(3):99–107CrossRefGoogle Scholar
  17. R Development Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  18. Roberts RD, Johnson MS (1978) Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environ Pollut 16(4):293–310CrossRefGoogle Scholar
  19. Romero FM, Armienta MA, Gutierrez ME, Villaseñor G (2008) Factores geológicos y climáticos que determinan la peligrosidad y el impacto ambiental de jales mineros. Revista Internacional de Contaminación Ambiental 24:43–54Google Scholar
  20. Ruiz Huerta EA, Armienta Hernández MA (2012) Acumulación de arsénico y metales pesados en maíz en suelos cercanos a jales o residuos mineros. Rev Int Contam Ambie 28(2):103–117Google Scholar
  21. Servicio Geológico Mexicano (2013) Anuario Estadístico de la Minería Mexicana 2012. http://www.sgm.gob.mx/productos/pdf/O_Anuario_2012_Edicion%202013.pdf. Accessed February 2018
  22. Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Berlin, pp. 45–57Google Scholar
  23. Siwik EIH (2010) Distribution and trends of mercury in deciduous tree cores. Envorin Poll 158:2067–2073CrossRefGoogle Scholar
  24. Uribe Salas JA (2006) Historia económico y social de la compañía minera Las Dos Estrellas, en El Oro y Tlalpujahua, S. A. 1898–1938. Facultad de Historia, UMSNH, pp 362Google Scholar
  25. Uribe Salas JA (2008) Historia de la Minería en Michoacán. Morelia, Universidad Michoacana de San Nicolás de Hidalgo, Sociedad Mexicana de Mineralogía, Museo Tecnológico del Siglo XIX “Las Dos Estrellas”. vol 2. Morevallado Editores, Morelia, MichoacánGoogle Scholar
  26. Wang T (2007) Liquid chromatography– inductively coupled plasma mass spectrometry (LC–ICP–S). J Liq Chromatogr Relat Technol 30:807–831CrossRefGoogle Scholar
  27. WHO (1988) Toxicological evaluation of certain food additives and contaminants (WHO Food Additive Series No. 24). Cambridge University Press, CambridgeGoogle Scholar
  28. Yintao L, Hong Y, Dan S, Yichen J, Shichao Z, Jun Y (2015) Heavy metal residues in soil and accumulation in maize at long-term wastewater irrigation area in Tongliao, China. J Chemy 2015:9Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Verónica Osuna-Vallejo
    • 1
  • Cuauhtémoc Sáenz-Romero
    • 2
  • Luis Escalera-Vázquez
    • 3
  • Erick de la Barrera
    • 1
  • Roberto Lindig-Cisneros
    • 1
  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México (IIES-UNAM)MoreliaMexico
  2. 2.Instituto de Investigaciones Agropecuarias y Forestales (IIAF)Universidad Michoacana de San Nicolás de Hidalgo (UMSNH)MoreliaMexico
  3. 3.Laboratorio de Biología Acuática, Facultad de BiologíaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations