Advertisement

Occurrence of Acetamiprid Residues in Water Reservoirs in the Cotton Basin of Northern Benin

  • Berny’s G. Y. M. Zoumenou
  • Martin P. Aïna
  • Ibrahim Imorou Toko
  • Ahmed Igout
  • Caroline Douny
  • François Brose
  • Bruno Schiffers
  • Ibrachi Gouda
  • Kisito Chabi Sika
  • Patrick Kestemont
  • Marie-Louise ScippoEmail author
Article

Abstract

An Ultra performance liquid chromatography (UPLC) coupled to UV detection method was developed to determine acetamiprid residues in water reservoirs of northern Benin, close to cotton fields. The quantification limit of this method was 0.2 µg L−1 acetamiprid in water, its precision ranged between 8% and 22%, and its trueness between 99% and 117% (for concentrations ranging from 0.2 to 5.0 µg L−1). Acetamiprid residues were determined in water samples collected in four reservoirs from northern Benin during the phytosanitary treatment period of cotton. The minimum and maximum concentrations of acetamiprid residues in water were 0.2 and 7.7 µg L−1, respectively. These levels do not represent any risk for human consumption of this water, but indicate a regular use of acetamiprid, possibly together with other pesticides which could be more harmful for both humans and aquatic species.

Keywords

Acetamiprid Surface water UPLC–UV Agriculture Cotton Benin 

Notes

Acknowledgements

This study was performed with the financial support of the ARES-CCD (Academy of Research and Higher Education-Committee for Development Cooperation, Belgium) (Project AquaTox-Benin).

References

  1. Agbohessi PT, Imorou- Toko I, Ouédraogo A, Jauniaux T, Kestemont P (2015) Assessment of the health status of wild fish inhabiting a cotton basin heavily impacted by pesticides in Benin (West Africa). Sci Total Environ 506–507:567–584.  https://doi.org/10.1016/j.scitotenv.2014.11.047 CrossRefGoogle Scholar
  2. ASECNA (2016) (Agence pour la sécurité de la navigation aérienne en Afrique et à Madagascar), Station de Kandi, Département de l’Alibori. Données mensuelles sur la température, la pluviométrie et l’humidité Kandi, Département de l’Alibori. Données mensuelles sur la température, la pluviométrie et l’humidité relative de 2003 à 2012Google Scholar
  3. EC (European Commission) (2004) SANCO/1392/2001-Review Report for the Active Substance Acetamiprid. Protection directorate-general. E1-Plant health. P1-33Google Scholar
  4. EC (European Council) (1998) Council Directive 98/83/EC of 3 Nov 1998 on the quality of water intended for human consumption. Official Journal L 330:32–54Google Scholar
  5. EFSA (European Food Safety Authority) (2016) Conclusion on the peer review of the pesticide risk assessment of the active substance acetamiprid. EFSA J 14:4610–4636.  https://doi.org/10.2903/j.efsa.2016.4610 Google Scholar
  6. EPA (United States Environmental protection Agency) (2002) Pesticide fact sheet: acetamiprid. Available at https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-099050_15-Mar-02.pdf
  7. Gouda AI, Mehoba MHL, Toko II, Scippo ML, Kestemont P, Schiffers B (2018) Comparison of drift of two types of sprayers used in cotton production in Benin. Biotechnol Agron Soc Environ 22:1–12. https://popups.uliege.be/1780-4507/index.php?id=16431
  8. Guedegba NL, Imorou Toko I, Agbohessi PT, Oreins N, François L, Palluel O, Mandiki SNM, Porcher JM, Schiffers B, Scippo ML, Kestemont P. A multi-biomarker assessment of chronic effects of an insecticide Acer 35 EC on Nile Tilapia Oreochromis niloticus under laboratory conditions. Eurotox 2018 conferenceGoogle Scholar
  9. Han W, Tian Y, Shen X (2018) Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192:59–65.  https://doi.org/10.1016/j.chemosphere.2017.10.149 CrossRefGoogle Scholar
  10. Hladik ML, Kolpin DW, Kuivila KM (2014) Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ Pollut 193:189–196.  https://doi.org/10.1016/j.envpol.2014.06.033 CrossRefGoogle Scholar
  11. Hoyle S, Code A (2016) Neonicotinoids in California’s surface waters: a preliminary review of potential risk to aquatic invertebrates. The Xerces Society for Invertebrate Conservation, pp 1–17Google Scholar
  12. Imamura T, Yanagawa Y, Nishikawa K, Matsumoto N, Sakamoto T (2010) Two cases of acute poisoning with acetamiprid in humans. Clin Toxicol 48:851–853.  https://doi.org/10.3109/15563650.2010.517207 CrossRefGoogle Scholar
  13. Jabeen F, Chaudhry AS, Manzoor S, Shaheen T (2015) Examining pyrethroids, carbamates and neonicotinoids in fish, water and sediments from the Indus River for potential health risks. Environ Monit Assess 187:1–11.  https://doi.org/10.1007/s10661-015-4273-4 CrossRefGoogle Scholar
  14. Kim BM, Park JS, Choi JH, Abd El-Aty AM, Na TW, Shim JH (2012) Residual determination of clothianidin and its metabolites in three minor crops via tandem mass spectrometry. Food Chem 131:1546–1551.  https://doi.org/10.1016/j.foodchem.2011.09.134 CrossRefGoogle Scholar
  15. MAEP (Ministère Béninois de l’Agriculture, de l’Elevage et de la Pêche) (2015) Liste des produits phytosanitaires disponibles pour la campagne agricole dans les départements du Borgou-Alibori. Fiche technique Cotonou (Bénin)Google Scholar
  16. Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ Int 74:291–303.  https://doi.org/10.1016/j.envint.2014.10.024 CrossRefGoogle Scholar
  17. Park JY, Choi JH, Kim BM, Park JH, Cho SK, Ghafar MW, Abd El-Aty AM, Shim JH (2010) Determination of acetamiprid residues in zucchini grown under greenhouse conditions: application to behavioral dynamics. Biomed Chromatogr 25:136–146.  https://doi.org/10.1002/bmc.1529 CrossRefGoogle Scholar
  18. Phua DH, Lin CC, Wu ML, Deng JF, Yang CC (2009) Neonicotinoid insecticides: an emerging cause of acute pesticide poisoning. Clin Toxicol 47:336–341.  https://doi.org/10.1080/15563650802644533 CrossRefGoogle Scholar
  19. Raj JS, Baby J (2015) Impact of acetamiprid toxicity on biochemical biomarkers (protein and carbohydrate) in some tissues of the fish Oreochromis mossambicus. Int J Zool Res 11:222–227.  https://doi.org/10.3923/ijzr.2015.222.227 CrossRefGoogle Scholar
  20. Sanchez-Bayo F, Hyne RV (2014) Detection and analysis of neonicotinoids in river waters – development of a passive sampler for three commonly used insecticides. Chemosphere 99:143–151.  https://doi.org/10.1016/j.chemosphere.2013.10.051 CrossRefGoogle Scholar
  21. SANTE/11945/2015 (2015) Analytical quality control and method validation procedures for pesticide residues analysis in food and feedGoogle Scholar
  22. Seccia S, Fidente P, Barbini DA, Morrica P (2005) Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal Chim Acta 553:21–26.  https://doi.org/10.1016/j.aca.2005.08.006 CrossRefGoogle Scholar
  23. Todani M, Kaneko T, Hayashida H, Kaneda K, Tsuruta R, Kasaoka S, Maekawa T (2008) Acute poisoning with neonicotinoid insecticide acetamiprid. Chudoku Kenkyu 21:387–390Google Scholar
  24. Wang P, Yang X, Wang J, Cui J, Dong AJ, Zhao HT, Zhang LW, Wang ZY, Xu RB, Li WJ, Zhang YC, Zhang H, Jing J (2012) Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid–liquid micro-extraction by high performance liquid chromatography. Food Chem 134:1691–1698.  https://doi.org/10.1016/j.foodchem.2012.03.103 CrossRefGoogle Scholar
  25. Xiao Z, Li X, Wang X, Shen J, Ding S (2011) Determination of neonicotinoid insecticides residues in bovine tissues by pressurized solvent extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B 879:117–122.  https://doi.org/10.1016/j.jchromb.2010.11.008 CrossRefGoogle Scholar
  26. Zhiming X, Yunxia Y (2013) Determination of neonicotinoid insecticides residues in eels using subcritical water extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Anal Chim Acta 777:32–40.  https://doi.org/10.1016/j.aca.2013.03.026 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Berny’s G. Y. M. Zoumenou
    • 1
    • 2
  • Martin P. Aïna
    • 2
  • Ibrahim Imorou Toko
    • 3
  • Ahmed Igout
    • 4
  • Caroline Douny
    • 1
  • François Brose
    • 1
  • Bruno Schiffers
    • 5
  • Ibrachi Gouda
    • 3
    • 5
  • Kisito Chabi Sika
    • 6
  • Patrick Kestemont
    • 7
  • Marie-Louise Scippo
    • 1
    Email author return OK on get
  1. 1.Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public HealthUniversity of LiègeLiègeBelgium
  2. 2.Laboratoire des Sciences et Techniques de l’Eau, Ecole Polytechnique d’Abomey-CalaviUniversité d’Abomey-CalaviAbomey-CalaviBenin
  3. 3.Laboratoire de recherche en aquaculture et écotoxicologie aquatique (LaRAEAq), Faculté d’AgronomieUniversité de ParakouParakouBenin
  4. 4.Department of biomedical and preclinical sciences, Faculty of MedicineUniversity of LiègeLiègeBelgium
  5. 5.Laboratoire de Phytopharmacie, Gembloux Agro-Bio TechUniversity of LiègeLiègeBelgium
  6. 6.Laboratoire Central de sécurité Sanitaire des Aliments (LCSSA)CotonouBenin
  7. 7.Unit of Research in Environmental and Evolutionary Biology, Laboratory of Ecophysiology and EcotoxicologyUniversity of NamurNamurBelgium

Personalised recommendations