Advertisement

Emerging and Traditional Organic Markers in Areas with Multiple Anthropogenic Activities: Development of an Analytical Protocol and Its Application in Environmental Assessment Studies

  • Pollyana C. V. de Morais
  • Allyne F. Gama
  • Gabrielle M. Fernandes
  • Andre H. B. Oliveira
  • Marcielly F. B. Lima
  • Felipe R. dos Santos
  • Davi A. Martins
  • Ronaldo F. Nascimento
  • Rivelino M. Cavalcante
Article

Abstract

This work describes the development of an analytical protocol combining cleanup by liquid–solid extraction and GC–MS for the determination of emerging and traditional multi-molecular markers. The procedure was used for the environmental assessment of a coastal region with multiple human activities. Global recovery rates ranged from 45.49% to 119.4% for the 46 substances analyzed: pesticides (73.7%–97.7%), PAHs (52.5%–93.7%), sterols (66.7%–119.4%) and natural and synthetic hormones (45.5%–119.1%) and the rates were compared to those reported in studies on both individual classes and multi-classes of contaminants. The analytical protocol demonstrated satisfactory efficiency and could be used successfully in environmental assessments and source assignment studies. The environmental assessment study revealed that the Acaraú River in northeastern Brazil is influenced by the combination of urban and rural activities. The sources of PAHs are vehicular traffic and the burning of biomass; pesticides stem from pest control in agribusiness and public health campaigns; sterols and hormones stem from a combination of natural inputs, human sewage (treated and raw) and animal husbandry activities.

Keywords

Emerging contaminants Sediment quality Anthropogenic markers Source indicator 

Notes

Acknowledgements

The authors are grateful to the Brazilian fostering agency CNPq (process numbers: 484171/2010-0 and 480583/2012-9) and FUNCAP (process number: 150.01.00/09) for the resources made available to the project Pesticides in the Semiarid Region of Ceará. The authors also thank Prof. Dr. Kamila Vieira for the statistical treatment of the data and the Laboratório de Oceanografia Geológica (LOG/Labomar). Special thanks go to Dr. K. Legg for his experience, friendship and contagious joy.

Supplementary material

128_2018_2475_MOESM1_ESM.docx (89 kb)
Supplementary material 1 (DOCX 88 KB)

References

  1. Abreu-Mota MA, de Moura Barboza CA, Bícego MC, Martins CC (2014) Sedimentary biomarkers along a contamination gradient in a human-impacted sub-estuary in Southern Brazil: a multi-parameter approach based on spatial and seasonal variability. Chemosphere 103:156–163.  https://doi.org/10.1016/j.chemosphere.2013.11.052 CrossRefGoogle Scholar
  2. Adeel M, Song X, Wang Y, Francis D, Yang Y (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119.  https://doi.org/10.1016/j.envint.2016.12.010 CrossRefGoogle Scholar
  3. Armas ED, Monteiro RTR, Antunes PM, Dos Santos MAPF, De Camargo PB, Abakerli RB (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do Rio Corumbatí e principais afluentes. Quim Nova 30(5):1119–1127.  https://doi.org/10.1590/S0100-40422007000500013 CrossRefGoogle Scholar
  4. Banjoo DR, Nelson PK (2005) Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments. J Chromatogr A 1066(1–2):9–18.  https://doi.org/10.1016/j.chroma.2005.01.033 CrossRefGoogle Scholar
  5. Barco-Bonilla N, Vidal JLM, Garrido Frenich A, Romero-González R (2009) Comparison of ultrasonic and pressurized liquid extraction for the analysis of polycyclic aromatic compounds in soil samples by gas chromatography coupled to tandem mass spectrometry. Talanta 78(1):156–164.  https://doi.org/10.1016/j.talanta.2008.10.048 CrossRefGoogle Scholar
  6. Barwick V (ed) (2016) Eurachem/CITAC guide: guide to quality in analytical chemistry: an aid to accreditation, 3rd edn. ISBN 978-0-948926-32-7. http://www.eurachem.org
  7. Ben Salem F, Ben Said O, Duran R, Monperrus M (2016) Validation of an adapted QuEChERS method for the simultaneous analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in sediment by gas chromatography-mass spectrometry. Bull Environ Contam Toxicol 96(5):678–684.  https://doi.org/10.1007/s00128-016-1770-2 CrossRefGoogle Scholar
  8. Carreira RS, Cordeiro LGMS, Bernardes MC, Hatje V (2016) Distribution and characterization of organic matter using lipid biomarkers: a case study in a pristine tropical bay in NE Brazil. Estuar Coast Shelf Sci 168:1–9.  https://doi.org/10.1016/j.ecss.2015.11.007 CrossRefGoogle Scholar
  9. Cavalcante RM, Filho MNS, Viana RB, Oliveira IRN, Nascimento RF, Silveira ER, Freire GSS (2007) Utilization of solid-phase extraction (SPE) for the determination of polycyclic aromatic hydrocarbons in environmental aqueous matrices. Quim Nova 30:560–564.  https://doi.org/10.1590/S0100-40422007000300010 CrossRefGoogle Scholar
  10. Cavalcante RM, De Lima DM, Correia LM, Nascimento RF, Silveira ER, Freire GSS, Viana RB (2008) Extraction techniques and cleanup procedures for the determination of PAHs in sediments of the Ceará coast. Quim Nova 31(6):1371–1377.  https://doi.org/10.1590/S0100-40422008000600019 CrossRefGoogle Scholar
  11. Cavalcante RM, Sousa FW, Nascimento RF, Silveira ER, Freire GSS (2009) The impact of urbanization on tropical mangroves (Fortaleza, Brazil): evidence from PAH distribution in sediments. J Environ Manag 91(2):328–335.  https://doi.org/10.1016/j.jenvman.2009.08.020 CrossRefGoogle Scholar
  12. Cavalcante RM, de Andrade MVF, Marins RV, Oliveira LDM (2010) Development of a headspace-gas chromatography (HS-GC-PID-FID) method for the determination of VOCs in environmental aqueous matrices: optimization, verification and elimination of matrix effect and VOC distribution on the Fortaleza Coast, Brazil. Microchem J 96(2):337–343.  https://doi.org/10.1016/j.microc.2010.05.014 CrossRefGoogle Scholar
  13. Cavalcante RM, Lima DM, Fernandes GM, Duaví WC (2012) Relation factor: a new strategy for quality control in the determination of pesticides in environmental aqueous matrices. Talanta 93:212–218.  https://doi.org/10.1016/j.talanta.2012.02.015 CrossRefGoogle Scholar
  14. Chan KH, Lam MHW, Poon KF, Yeung HY, Chiu TKT (1998) Application of sedimentary fecal stanols and sterols in tracing sewage pollution in coastal waters. Water Res 32(1):225–235.  https://doi.org/10.1016/S0043-1354(97)00175-9 CrossRefGoogle Scholar
  15. Costa IL, Pletsch AL, Torres YR (2014) Occurrence of antidepressant drugs in the environment—a review. Rev Virtual Quim 6(5):1408–1431.  https://doi.org/10.5935/1984-6835.20140092 Google Scholar
  16. Damas EYC, Medina MOC, Clemente ACN, Diaz MAD, Bravo LG, Ramada RM, Porto RMD (2009) Validation of an analytical methodology for the quantitative analysis of petroleum hydrocarbons in marine sediment samples. Quim Nova 32(4):855–860.  https://doi.org/10.1590/S0100-40422009000400006 CrossRefGoogle Scholar
  17. Danzer K, Currie LA (1998) GUIDELINES FOR CALIBRATION IN ANALYTICAL CHEMISTRY Guideline for calibration in analytical chemistry—Part 1. Fundamentals and single component. Pure Appl Chem 70(4):993–1014CrossRefGoogle Scholar
  18. De La Torre-Roche RJ, Lee WY, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163(2–3):946–958.  https://doi.org/10.1016/j.jhazmat.2008.07.089 CrossRefGoogle Scholar
  19. Denoux G, Wang B (1998) Quantitative determination of polynuclear aromatic hydrocarbons by gas chromatography/mass spectrometry using the selected in monitoring mode. Geochem Environ Res Group 3:2–28Google Scholar
  20. Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22(4):299–304.  https://doi.org/10.1007/s003740050115 CrossRefGoogle Scholar
  21. Duaví WC, Gama AF, Morais PCV, de Oliveira AHB, do Nascimento RF, Cavalcante RM (2015) Contamination of aquatic environments by “urban pesticides”: the case of Cocó and Ceará Rivers, Fortaleza - Ceará. Brazil Química Nova 38(5):622–630.  https://doi.org/10.5935/0100-4042.20150055 Google Scholar
  22. Eganhouse RP (1997) Molecular markers and environmental organic geochemistry: an overview. In: Eganhouse RP (ed) Molecular markers in environmental geochemistry. American Chemical Society, Washington, DC, pp 1–20.  https://doi.org/10.1021/bk-1997-0671.ch001.CrossRefGoogle Scholar
  23. Fernandes PRN, Soares SD, Nascimento RF, Soares JB, Cavalcante RM (2009) Evaluation of polycyclic aromatic hydrocarbons in asphalt binder using matrix solid-phase dispersion and gas chromatography. J Chromatogr Sci 47(9):789–793.  https://doi.org/10.1093/chromsci/47.9.789 CrossRefGoogle Scholar
  24. Frena M, Bataglion GA, Tonietto AE, Eberlin MN, Alexandre MR, Madureira LAS (2016) Assessment of anthropogenic contamination with sterol markers in surface sediments of a tropical estuary (Itajaí-Açu, Brazil). Sci Total Environ 544:432–438.  https://doi.org/10.1016/j.scitotenv.2015.11.137 CrossRefGoogle Scholar
  25. Froehner S, Machado KS, Stefan E, Bleninger T, da Rosa EC, Martins CC (2012) Occurrence of selected estrogens in mangrove sediments. Mar Pollut Bull 64(1):75–79.  https://doi.org/10.1016/j.marpolbul.2011.10.021 CrossRefGoogle Scholar
  26. Gama AF, De Oliveira AHB, Cavalcante RM (2013) Inventário de agrotóxicos e risco de contaminação química dos recursos hídricos no semiárido cearence. Quim Nova 36(3):462–467.  https://doi.org/10.1590/S0100-40422013000300017 CrossRefGoogle Scholar
  27. Gama AF, Cavalcante RM, Duaví WC, Silva VPA, Nascimento RF (2017) Occurrence, distribution, and fate of pesticides in an intensive farming region in the Brazilian semi-arid tropics (Jaguaribe River, Ceará). J Soils Sedim 17(4):1160–1169.  https://doi.org/10.1007/s11368-016-1597-9 CrossRefGoogle Scholar
  28. Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY (2010) Uso sustentável e Conservação dos Recursos Florestais da Caatinga. Uso sustentável e conservação dos recursos florestais da caatinga. Clim Change.  https://doi.org/10.1007/s10584-012-0443-3 Google Scholar
  29. Grimalt JO, Fernández P, Bayona JM, Albaigés J (1990) Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environ Sci Technol 24:357–363.  https://doi.org/10.1021/es00073a011 CrossRefGoogle Scholar
  30. Hughes KA, Thompson A (2004) Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environ Pollut 127(3):315–321.  https://doi.org/10.1016/j.envpol.2003.09.004 CrossRefGoogle Scholar
  31. IPECE - INSTITUTO DE PESQUISA E ESTRATEGIA ECONOMICA DO CEARA. Ceara em mapas. Governo do Estado do Ceara (2013) http://www2.ipece.ce.gov.br/atlas/capitulo4/43/images3x/Esgotamento_Sanitario_Urbano_2013.jpg. Accessed Jun 2018.
  32. Lanças F (2004) Validação de métodos cromatográficos de análise. Ed. RiMa, São PauloGoogle Scholar
  33. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303.  https://doi.org/10.1016/j.envpol.2011.12.034 CrossRefGoogle Scholar
  34. Leeming R, Bate N, Hewlett R, Nichols PD (1998) Discriminating faecal pollution: a case study of stormwater entering Port Phillip Bay, Australia. Water Sci Technol 38(10 pt 8):15–22.  https://doi.org/10.1016/S0273-1223(98)00728-8 CrossRefGoogle Scholar
  35. Liu D, Wu S, Xu H, Zhang Q, Zhang S, Shi L, Yao C, Liu Y, Cheng J (2017) Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: implications for ecological and human health risks. Ecotoxicol Environ Saf 140:222–229.  https://doi.org/10.1016/j.ecoenv.2017.02.045 CrossRefGoogle Scholar
  36. Lu H, Lin Y, Wilson PC (2009) Organic-solvent-free extraction method for determination of carbamate and carbamoyloxime pesticides in soil and sediment samples. Bull Environ Contam Toxicol 83:621–625.  https://doi.org/10.1007/s00128-009-9873-7 CrossRefGoogle Scholar
  37. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, et al. (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31(12):3341–3347.  https://doi.org/10.1021/es970512m CrossRefGoogle Scholar
  38. Martins CC, Seyffert BH, Braun JAF, Fillmann G (2011) Input of organic matter in a large South American tropical estuary (paranaguá estuarine system, Brazil) indicated by sedimentary sterols and multivariate statistical approach. J Braz Chem Soc 22(8):1585–1594.  https://doi.org/10.1590/S0103-50532011000800023 CrossRefGoogle Scholar
  39. Martins CC, Caroline A, Barbosa-cintra SCT, Lúcia A, Dauner L, Souza FM (2014) An integrated evaluation of molecular marker indices and linear alkylbenzenes (LABs) to measure sewage input in a subtropical. Environ Pollut 188:71–80.  https://doi.org/10.1016/j.envpol.2014.01.022 CrossRefGoogle Scholar
  40. Matić I, Grujić S, Jauković Z, Laušević M (2014) Trace analysis of selected hormones and sterols in river sediments by liquid chromatography-atmospheric pressure chemical ionization–tandem mass spectrometry, J Chromatogr A 1364:117–127.  https://doi.org/10.1016/j.chroma.2014.08.061 CrossRefGoogle Scholar
  41. McCalley DV, Cooke M, Nickless G (1981) Effect of sewage treatment on faecal sterols. Water Res 15(8):1019–1025.  https://doi.org/10.1016/0043-1354(81)90211-6 CrossRefGoogle Scholar
  42. Mudge SM, Bebianno MJ (1997) Sewage contamination following in a accidental spillage in the Ria Formosa, Portugal. Mar Pollut Bull 34:163–170.  https://doi.org/10.1016/S0025-326X(96)00082-3 CrossRefGoogle Scholar
  43. Oliveira AHB, Cavalcante RM, Duaví WC, Fernandes GM, Nascimento RF, Queiroz MELR, Mendonça KV (2016) The legacy of organochlorine pesticide usage in a tropical semi-arid region (Jaguaribe River, Ceará, Brazil): implications of the influence of sediment parameters on occurrence, distribution and fate. Sci Total Environ 542(October):254–263.  https://doi.org/10.1016/j.scitotenv.2015.10.058 CrossRefGoogle Scholar
  44. Oliveira et al (2017) Chapter 3: insights about advances in chromatographic analysis in complex environmental analytical matrices. In: Advances in chromatographic analysis. http://www.avidscience.com. Accessed June 2018
  45. Pardini D (2014) Hormone replacement therapy in menopause. Arquivos Brasileiros de Endocrinologia Metabologia 58(2):172–181.  https://doi.org/10.1590/0004-2730000003044 CrossRefGoogle Scholar
  46. Pimentel MF, Damasceno ÉP, Jimenez PC, Araújo PFR, Bezerra MF, de Morais PCV, Lotufo LVC (2016) Endocrine disruption in Sphoeroides testudineus tissues and sediments highlights contamination in a northeastern Brazilian estuary. Environ Monit Assess 188(5):298.  https://doi.org/10.1007/s10661-016-5300-9 CrossRefGoogle Scholar
  47. Queiroz L, Rossi S, Meireles J, Coelho C (2013) Shrimp aquaculture in the federal state of Ceará, 1970–2012: trends after mangrove forest privatization in Brazil. Ocean Coast Manag 73:54–62.  https://doi.org/10.1016/j.ocecoaman.2012.11.009 CrossRefGoogle Scholar
  48. Quintas PY, Oliva AL, Alvarez MB, Arias AH, Domini CE, Mariano G, Jorge E, Marcovecchio (2018) Fast and feasible ultrasound–assisted pretreatment for the determination of organotin compounds in environmental samples. Arch Environ Contam Toxicol 74:645–655.  https://doi.org/10.1007/s00244-017-0494-6 CrossRefGoogle Scholar
  49. Ribani M, Grespan Bottoli CB, Collins CH, Fontes Jardim ICS, Costa Melo LF (2004) Validação em métodos cromatográficos e eletroforéticos. Quim Nova 27(5):771–780.  https://doi.org/10.1590/S0100-40422004000500017 CrossRefGoogle Scholar
  50. Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83(12):4616–4648.  https://doi.org/10.1021/ac200915r CrossRefGoogle Scholar
  51. Santana LMBM, Cavalcante RM (2016) Transformações metabólicas de agrotóxicos em peixes: uma revisão. Orbital: Electron J Chem 8(4):257–268.  https://doi.org/10.17807/orbital.v8i4.856 Google Scholar
  52. Silva VPA, Paz; MSO RM. Cavalcante; Nascimento RF (2016) Strategy for correction of matrix effect on the determination of pesticides in water bodies using SPME-GC-FID. J Braz Chem Soc.  https://doi.org/10.21577/0103-5053.20160264 Google Scholar
  53. Sojinu SO, Sonibare OO, Ekundayo O, Zeng EY (2012) Science of the total environment assessing anthropogenic contamination in surface sediments of Niger Delta, Nigeria with fecal sterols and n-alkanes as indicators. Sci Total Environ 441:89–96.  https://doi.org/10.1016/j.scitotenv.2012.09.015 CrossRefGoogle Scholar
  54. Sousa AS, Duaví WC, Cavalcante RM, Milhome MAL, Do Nascimento RF (2016) Estimated levels of environmental contamination and health risk assessment for herbicides and insecticides in surface Water of Ceará, Brazil. Bull Environ Contam Toxicol 96(1):90–95.  https://doi.org/10.1007/s00128-015-1686-2 CrossRefGoogle Scholar
  55. Stogiannidis E, Laane R (2015) Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology reviews of environmental contamination and toxicology, vol 234. Springer International Publishing, SwitzerlandGoogle Scholar
  56. Streck G (2009) Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment. TrAC Trends Anal Chem 28(6):635–652.  https://doi.org/10.1016/j.trac.2009.03.006 CrossRefGoogle Scholar
  57. Takada H, Eganhouse RP (1998) Molecular markers of anthropogenic waste. In: Meyers RA (ed) Encyclopedia of environmental analysis and remediation. Wiley, New York, pp 2883–2940Google Scholar
  58. Takada H, Farrington JW, Bothner MH, Johnson CG, Tripp BW (1994) Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106. Envir Sci Technol 28:1062–1072.  https://doi.org/10.1021/es00055a015 CrossRefGoogle Scholar
  59. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants - I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1–2):81–90.  https://doi.org/10.1016/S0048-9697(98)00334-9 CrossRefGoogle Scholar
  60. Venkatesan MI, Kaplan IR (1990) Sedimentary coprostanol as an index of sewage addition in Santa Monica Basin, Southern California. Environ Sci Technol 24(2):208–214.  https://doi.org/10.1021/es00072a009 CrossRefGoogle Scholar
  61. Venturini N, Bícego MC, Taniguchi S, Sasaki ST, García-Rodríguez F, Brugnoli E, Muniz P (2015) A multi-molecular marker assessment of organic pollution in shore sediments from the Río de la Plata Estuary, SW Atlantic. Mar Pollut Bull 91(2):461–475.  https://doi.org/10.1016/j.marpolbul.2014.06.056 CrossRefGoogle Scholar
  62. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9(2):83–99.  https://doi.org/10.1016/0146-6380(86)90089-6 CrossRefGoogle Scholar
  63. Wang G, Ma P, Zhang Q, Lewis J, Lacey M, Furukawa Y, Zhang S (2012) Endocrine disrupting chemicals in New Orleans surface waters and Mississippi Sound sediments. J Environ Monit 14(5):1353–1364.  https://doi.org/10.1039/c2em30095h CrossRefGoogle Scholar
  64. Wang Y, Wang Q, Hu L, Lu G, Li Y (2015) Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. Environ Geochem Health 37(1):147–156.  https://doi.org/10.1007/s10653-014-9637-0 CrossRefGoogle Scholar
  65. Wang Z, Li R, Wu F, Feng C, Ye C, Yan C (2017) Estrogenic compound profiles in an urbanized industry-impacted coastal bay and potential risk assessment by pollution indices and multivariative statistical methods. Mar Pollut Bull 1:397–407.  https://doi.org/10.1016/j.marpolbul.2016.09.050 CrossRefGoogle Scholar
  66. Wisnieski E, Ceschim LMM, Martins CC (2016) Validação de um método analítico para determinação de marcadores orgânicos geoquímicos em amostras de sedimentos marinhos. Quim Nova 39(8):1007–1014.  https://doi.org/10.5935/0100-4042.20160103 Google Scholar
  67. Yunker MB, Macdonald RW, Vingarzan R, Mitchell H, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin a critical appraisal of PAH ratio as indicators of PAH source and composition. Org Geochem 33:489–515.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  68. Zhang Z, Ren N, Kannan K, Nan J, Liu L, Ma W, Li Y (2014) Occurrence of endocrine-disrupting phenols and estrogens in water and sediment of the Songhua River, Northeastern China. Arch Environ Contam Toxicol 66(3):361–369.  https://doi.org/10.1007/s00244-014-9998-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pollyana C. V. de Morais
    • 1
  • Allyne F. Gama
    • 1
  • Gabrielle M. Fernandes
    • 1
  • Andre H. B. Oliveira
    • 1
  • Marcielly F. B. Lima
    • 1
  • Felipe R. dos Santos
    • 1
  • Davi A. Martins
    • 1
  • Ronaldo F. Nascimento
    • 2
  • Rivelino M. Cavalcante
    • 1
  1. 1.Laboratory for Assessment of Organic Contaminants (LACOr)Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC)FortalezaBrazil
  2. 2.Laboratory of Traces Analysis (LAT) – Department of ChemistryFederal University of CearáFortalezaBrazil

Personalised recommendations