Advertisement

High Resistance of Resting Eggs of Cladoceran Moina macrocopa to the Effect of Heavy Metals

  • Natalia Oskina
  • Tatiana Lopatina
  • Olesya Anishchenko
  • Egor ZadereevEmail author
Article

Abstract

The research aimed to determine critical concentrations of heavy metals at which survival of resting eggs of the cladoceran Moina macrocopa is negatively affected. Resting eggs’ viability was not affected over a 30-days exposure towards copper, cadmium, zinc or nickel at concentrations up to 60–70 g/L. When resting eggs were exposed to sediment contaminated with heavy metals for 8 months, the hatching success was affected at 30 g copper/kg. Thus, resting eggs of Cladocera can tolerate heavy metals at concentrations that far exceed lethal concentrations of heavy metals to active life stage and exceed low or moderate levels of environmental pollution. Follow up investigation of life table parameters of hatchlings from resting eggs exposed to heavy metals demonstrated that neither lifespan nor fecundity of hatchlings differ from control animals. These results demonstrate that zooplankton may rapidly recover from resting egg bank once aquatic habitat becomes unpolluted.

Keywords

Resting eggs Heavy metals Resistance Hatching success Life table parameters 

Notes

Acknowledgements

The research was supported by Grant No. 15-04-05199 from Russian Foundation for Basic Research. We are grateful to two anonymous reviewers for valuable comments that substantially improved manuscript.

References

  1. Alekseev VR, de Stasio BT, Gilbert JJ (eds) (2007) Diapause in aquatic invertebrates: theory and human use. Springer, Dordrecht, p 257Google Scholar
  2. Alekseev V, Makrushin A, Hwang JS (2010) Does the survivorship of activated resting stages in toxic environments provide cues for ballast water treatment? Mar Pollut Bull 61:254–258CrossRefGoogle Scholar
  3. Aránguiz-Acuña A, Pérez-Portilla P (2017) Metal stress in zooplankton diapause production: post-hatching response. Ecotoxicology 26:329–339CrossRefGoogle Scholar
  4. Avila-Perez P, Balcazar M, Zarazua-Ortega G, Barcelo-Quintal I, Dıaz-Delgado C (1999) Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Sci Total Environ 234:185–196CrossRefGoogle Scholar
  5. Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84CrossRefGoogle Scholar
  6. Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant contamination sites in China. Environ Pollut 132:29–40CrossRefGoogle Scholar
  7. Donnachie RL, Johnson AC, Moeckel C, Pereira MG, Sumpter JP (2014) Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Environ Pollut 194:17–23CrossRefGoogle Scholar
  8. Farre M, Barcelo D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22:299–310CrossRefGoogle Scholar
  9. Garcıa GG, Nandini S, Sarma SSS (2004) Effect of cadmium on the population dynamics of Moina macrocopa and Macrothrix triserialis (Cladocera). Bull Environ Contam Toxicol 72:717–724CrossRefGoogle Scholar
  10. Gladyshev MI, Gribovskaya IV, Moskvicheva AV, Muchkina EY, Chuprov SM, Ivanova EA (2001) Content of metals in compartments of ecosystem of Siberian pond. Arch Environ Contam Toxicol 41:157–162CrossRefGoogle Scholar
  11. Hairston NG Jr, Hansen AM, Schaffner WR (2000) The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw Biol 45:133–145CrossRefGoogle Scholar
  12. Jiang XD, Wang GZ, Li SJ, He JF (2007) Heavy metal exposure reduces hatching success of Acartia pacifica resting eggs in the sediment. J Environ Sci 19:733–737CrossRefGoogle Scholar
  13. Kerfoot WC, Robbins JA, Weider LJ (1999) A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol Oceanogr 44:1232–1247CrossRefGoogle Scholar
  14. Nandini S, Picazo-Paez EA, Sarma SSS (2007) The combined effects of heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level on the demographic characters of Moina macrocopa (Crustacea: Cladocera). J Environ Sci Health Part A 42:1433–1442CrossRefGoogle Scholar
  15. Navis S, Waterkeyn A, Putman A, De Meester L, Vanermen G, Brendonck L (2015) Timing matters: sensitivity of Daphnia magna dormant eggs to fenoxycarb exposure depends on embryonic developmental stage. Aquat Toxicol 159:176–183CrossRefGoogle Scholar
  16. Navis S, Waterkeyn A, Voet T, De Meester L, Brendonck L (2013) Pesticide exposure impacts not only hatching of dormant eggs, but also hatchling survival and performance in the water flea Daphnia magna. Ecotoxicology 22:803–814CrossRefGoogle Scholar
  17. OECD Guideline for the Testing of Chemicals 218 (2004) Sediment-water chironomid toxicity test using spiked sedimentGoogle Scholar
  18. OECD Test Guideline 207 (1984) Earthworm, acute toxicity testGoogle Scholar
  19. Pokethitiyook P, Upatham ES, Leelhaphunt O (1987) Acute toxicity of various metals to Moina macrocopa. Nat Hist Bull Saim Soc 35:47–56Google Scholar
  20. Radzikowski J (2013) Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J Plankton Res 35:707–723CrossRefGoogle Scholar
  21. Raikow DF, Landrum PF, Reid DF (2007) Aquatic invertebrate resting egg sensitivity to glutaraldehyde and sodium hypochlorite. Environ Toxicol Chem 26:1770–1773CrossRefGoogle Scholar
  22. Razo I, Carrizales L, Castro J, Diaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152CrossRefGoogle Scholar
  23. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS ONE 10(12):e0146021CrossRefGoogle Scholar
  24. Rogalski MA (2015) Tainted resurrection: metal pollution is shown in the Daphnia egg banks. Ecology 96:1166–1173CrossRefGoogle Scholar
  25. Sacmaci S, Yilmaz Y, Kartal S, Kaya M, Duman F (2014) Resting eggs as new biosorbent for preconcentration of trace elements in various samples prior to their determination by FAAS. Biol Trace Elem Res 159:254–262CrossRefGoogle Scholar
  26. Sarabia R, Del Ramo J, Varó I, Díaz-Mayans J, Torreblanca A (2008) Sublethal zinc exposure has a detrimental effect on reproductive performance but not on the cyst hatching success of Artemia parthenogenetica. Sci Total Environ 398:48–52CrossRefGoogle Scholar
  27. Tabche LM, Oliván LG, Martínez MG, Castillo CR, Santiago AM (2000) Toxicity of nickel in artificial sediment on acetylcholinesterase activity and hemoglobin concentration of the aquatic flea, Moina macrocopa. J Environ Hydrol 8:XVII–XVIIIGoogle Scholar
  28. Tamiya H, Ywamura T, Shibata K, Hase E, Nihei T (1953) Correlation between photosynthesis and light-independent metabolism in the growth of Chlorella. Biochim Biophys Acta 1:25–40Google Scholar
  29. US EPA Method 200.7 (2001) Trace elements in water, solids, and biosolids by inductively coupled plasma-atomic emission spectrometry. Revision 5.0. U.S. Environmental Protection Agency. 68 pGoogle Scholar
  30. Vazquez MD, Lopez J, Carballeira A (1999) Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicol Environ Saf 44:12–24CrossRefGoogle Scholar
  31. Vesk PA, Allaway WG (1997) Spatial variation of copper and lead concentrations of water hyacinth plants in a wetland receiving urban run-off. Aquat Bot 59:33–44CrossRefGoogle Scholar
  32. Wong CK (1992) Effects of chromium, copper, nickel, and zinc on survival and feeding of the cladoceran Moina macrocopa. Bull Environ Contam Toxicol 49:593–599CrossRefGoogle Scholar
  33. Wong CK, Wong PK (1990) Life table evaluation of the effects of cadmium exposure on the freshwater cladoceran, Moina macrocopa. Bull Environ Contam Toxicol 44:135–141CrossRefGoogle Scholar
  34. Wong CK, Wong PK, Tao H (1991) Toxicity of nickel and nickel electroplating water to the freshwater cladoceran Moina macrocopa. Bull Environ Contam Toxicol 47:448–454CrossRefGoogle Scholar
  35. Xu SL, Wang DL, Ye JN, Jia CY (2011) Joint toxicity effect of four heavy metal ions on Moina macrocopa. J Biol 28:21–25Google Scholar
  36. Zadereev ES, Gubanov VG (1996) The role of population density in gamogenesis induction in Moina macrocopa (Crustacea: Cladocera). Zhurnal Obshch Biol 57:360–367Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations