Advertisement

Model of Mercury Flux Associated with Volcanic Activity

  • Pavel Coufalík
  • Lukáš Krmíček
  • Ondřej Zvěřina
  • Natália Meszarosová
  • Jindřich Hladil
  • Josef Komárek
Article

Abstract

Volcanic activity is one of the primary sources of mercury in the earth’s ecosystem. In this work, volcanic rocks from four geotectonically distinct localities (the Czech Republic – intraplate, rift-related alkaline basaltic rocks; Iceland – hotspot/rift-related tholeiitic basaltic rocks; Japan – island arc calc-alkaline andesites; and Alaska – continental arc calc-alkaline dacites) were studied. Ultra-trace Hg contents in all samples ranged from 0.3 up to 6 µg/kg. The highest Hg content was determined for volcanic ash from Mount Redoubt (Alaska, USA). In the case of basaltic volcanic rocks, the obtained results are about two orders of magnitude smaller than values formerly assumed for primary mercury contents in basaltic lavas. They are close to predicted Hg contents in the mantle source, i.e. below 0.5 µg/kg. Hg degassing is probably a key process for the resulting Hg contents in material ejected during volcanic eruption, which is previously enriched by Hg in the shallow-crust.

Keywords

Mercury content Basalt Andesite Dacite 

Notes

Acknowledgements

The research was supported by the Grant Agency of the Czech Republic under project P503/12/0682, by Masaryk University under the project MUNI/A/0886/2016, by the Institute of Analytical Chemistry of the CAS under RVO 68081715, by the Institute of Geology of the CAS under RVO 67985831, and by the BUT project LO1408 “AdMaS UP – Advanced Materials, Structures and Technologies”, supported by the Ministry of Education, Youth and Sports CR under the “National Sustainability Programme I”.

References

  1. Bagnato E, Aiuppa A, Parello F, Calabrese S, D’Alessandro W, Mather TA, McGonigle AJS, Pyle DM, Wängberg I (2007) Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos Environ 41:7377–7388.  https://doi.org/10.1016/j.atmosenv.2007.05.060 CrossRefGoogle Scholar
  2. Bagnato E, Aiuppa A, Parello F, Allard P, Shinohara H, Liuzzo M, Giudice G (2011) New clues on the contribution of earth’s volcanism to the global mercury cycle. Bull Volcanol 73:497–510.  https://doi.org/10.1007/s00445-010-0419-y CrossRefGoogle Scholar
  3. Bagnato E, Tamburello G, Avard G, Martinez-Cruz M, Enrico M, Fu X, Sprovieri M, Sonke JE (2014) Mercury fluxes from volcanic and geothermal sources: an update. In: Zellmer GF, Edmonds GF, Straub SM (eds) The role of volatiles in the genesis, evolution and eruption of arc magmas, special publications 410. Geological Society, London, pp 263–285.  https://doi.org/10.1144/SP410.2 CrossRefGoogle Scholar
  4. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351.  https://doi.org/10.1016/S0045-6535(99)00283-0 CrossRefGoogle Scholar
  5. Cajz V, Schnabl P, Pécskay Z, Skácelová Z, Venhodová D, Šlechta S, Čížková K (2012) Chronological implications of the paleomagnetic record of the Late Cenozoic volcanic activity along the Moravia-Silesia border (NE Bohemian Massif). Geol Carpath 63:423–435.  https://doi.org/10.2478/v10096-012-0033-3 CrossRefGoogle Scholar
  6. Canil D, Crockford PW, Rossin R, Telmer K (2015) Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the earth. Chem Geol 396:134–142.  https://doi.org/10.1016/j.chemgeo.2014.12.029 CrossRefGoogle Scholar
  7. Coombs ML, Sisson TW, Bleick HA, Henton SM, Nye CJ, Payne AL, Cameron CE, Larsen JF, Wallace KL, Bull KF (2013) Andesites of the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:349–372.  https://doi.org/10.1016/j.jvolgeores.2012.01.002 CrossRefGoogle Scholar
  8. Coufalík P, Zvěřina O, Krmíček L, Pokorný R, Komárek J (2015) Ultra-trace analysis of Hg in alkaline lavas and regolith from James Ross Island. Antarct Sci 27:281–290.  https://doi.org/10.1017/S0954102014000819 CrossRefGoogle Scholar
  9. Dagsson-Waldhauserova P, Arnalds O, Olafsson H, Skrabalova L, Sigurdardottir GM, Branis M, Hladil J, Skala R, Navratil T, Chadimova L von Lowis of Menar S, Thorsteinsson T, Carlsen HK, Jonsdottir I (2014) Physical properties of suspended dust during moist and low wind conditions in Iceland. Icel Agric Sci 27:25–39Google Scholar
  10. Dissanayake CB, Vincent EA (1975) Mercury in rocks and minerals of the Skaergaard intrusion, East Greenland. Mineral Mag 40:33–42.  https://doi.org/10.1180/minmag.1975.040.309.05 CrossRefGoogle Scholar
  11. Ferrara R, Maserti BE (1990) Atmospheric mercury levels in the Mount Etna volcanic area after an eruptive phase. Environ Technol 11:51–56.  https://doi.org/10.1080/09593339009384838 CrossRefGoogle Scholar
  12. Fleischer M (1970) Summary of the literature on the inorganic geochemistry of mercury. In: Mercury in the environment, vol 713. U.S. Goverment Printing Office, Geological Survey Professional Paper, Washington, DC, pp 6–13Google Scholar
  13. Gotoh S, Tokudome S, Koga H (1978) Mercury in soil derived from igneous rock in Northern Kyushu, Japan. Soil Sci Plant Nutr 24:391–406.  https://doi.org/10.1080/00380768.1978.10433118 CrossRefGoogle Scholar
  14. Gray JE, Gent CA, Snee W (1998) The southwestern Alaska mercury belt and its relationship to the circum-pacific metallogenic mercury province. Polarforschung 68:187–196Google Scholar
  15. Henley RW, Berger BR (2013) Nature’s refineries—metals and metalloids in arc volcanoes. Earth Sci Rev 125:146–170.  https://doi.org/10.1016/j.earscirev.2013.07.007 CrossRefGoogle Scholar
  16. Hintelmann H (2010) Organomercurials. Their formation and pathways in the environment. In: Sigel A, Sigel H, Sigel RKO (eds) Organometallics in environment and toxicology: metal ions in life sciences. RSC Publishing, Cambridge, pp 365–401.  https://doi.org/10.1039/9781849730822-00365 CrossRefGoogle Scholar
  17. Martín JAR, Nanos N, Miranda JC, Carbonell G, Gil L (2013) Volcanic mercury in Pinus canariensis. Naturwissenschaften 100:739–747.  https://doi.org/10.1007/s00114-013-1070-1 CrossRefGoogle Scholar
  18. Mather TA, Pyle DM, Oppenheimer C (2003) Tropospheric volcanic aerosol. In: Robock A, Oppenheimer C (eds) Volcanism and the earth’s atmosphere, geophysical monograph, American Geophysical Union, Washington, DC 139:189–2012.  https://doi.org/10.1029/139GM12 CrossRefGoogle Scholar
  19. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964.  https://doi.org/10.5194/acp-10-5951-2010 CrossRefGoogle Scholar
  20. Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124.  https://doi.org/10.1016/j.atmosenv.2003.07.011 CrossRefGoogle Scholar
  21. Rudnick RL, Gao S (2014) Composition of the continental crust. In: Holland H, Turekian K (eds) Treatise on geochemistry. Elsevier Science, Amsterdam, pp 1–51.  https://doi.org/10.1016/B978-0-08-095975-7.00301-6 CrossRefGoogle Scholar
  22. Rytuba JJ (2003) Mercury from mineral deposits and potential environmental impact. Environ Geol 43:326–338.  https://doi.org/10.1007/s00254-002-0629-5 CrossRefGoogle Scholar
  23. Schlüter K (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39:249–271.  https://doi.org/10.1007/s002540050005 CrossRefGoogle Scholar
  24. Schmincke HU (2004) Volcanism. Springer, Berlin, p 324CrossRefGoogle Scholar
  25. Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822.  https://doi.org/10.1016/S1352-2310(97)00293-8 CrossRefGoogle Scholar
  26. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63CrossRefGoogle Scholar
  27. Sprovieri F, Pirrone N, Bencardino M, D’Amore F, Carbone F, Cinnirella S, Mannarino V, Landis M, Ebinghaus R, Weigelt A, Brunke EG, Labuschagne C, Martin L, Munthe J, Wängberg I, Artaxo P, Morais F, Barbosa HMJ, Brito J, Cairns W, Barbante C, Diéguez MC, Garcia PE, Dommergue A, Angot H, Magand O, Skov H, Horvat M, Kotnik J, Read KA, Neves LM, Gawlik BM, Sena F, Mashyanov N, Obolkin V, Wip D, Feng XB, Zhang H, Fu X, Ramachandran R, Cossa D, Knoery J, Marusczak N, Nerentorp M, Norstrom C (2016) Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos Chem Phys 16:11915–11935.  https://doi.org/10.5194/acp-16-11915-2016 CrossRefGoogle Scholar
  28. Symonds RB, Reed MH (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high temperature volcanic gases with examples from Mount St. Helens. Am J Sci 293:758–864.  https://doi.org/10.2475/ajs.293.8.758 CrossRefGoogle Scholar
  29. Symonds RB, Reed MH, Rose WI (1992) Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: insights into magma degassing and fumarolic processes. Geochim Cosmochim Acta 56:633–657.  https://doi.org/10.1016/0016-7037(92)90087-Y CrossRefGoogle Scholar
  30. Ulrych J, Ackerman L, Balogh K, Hegner E, Jelínek E, Pécskay Z, Přichystal A, Upton BGJ, Zimák J, Foltýnová R (2013) Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K-Ar ages, major/trace element and Sr–Nd isotopic data. Chem Erde 73:429–450.  https://doi.org/10.1016/j.chemer.2013.02.001 CrossRefGoogle Scholar
  31. WHO (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization, Germany, p 130Google Scholar
  32. Zintwana MP, Cawthorn RG, Ashwal LD, Roelofse F, Cronwright H (2012) Mercury in the Bushveld complex, South Africa, and the Skaergaard intrusion, Greenland. Chem Geol 320–321:147–155.  https://doi.org/10.1016/j.chemgeo.2012.06.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication September/2018

Authors and Affiliations

  • Pavel Coufalík
    • 1
    • 2
  • Lukáš Krmíček
    • 3
    • 4
    • 5
  • Ondřej Zvěřina
    • 1
    • 6
  • Natália Meszarosová
    • 1
  • Jindřich Hladil
    • 4
  • Josef Komárek
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
  3. 3.Faculty of Civil EngineeringBrno University of TechnologyBrnoCzech Republic
  4. 4.Institute of Geology of the Czech Academy of SciencesPrague 6Czech Republic
  5. 5.Department of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  6. 6.Department of Public Health, Faculty of MedicineMasaryk UniversityBrnoCzech Republic

Personalised recommendations