Advertisement

Concentrations of Mercury and Other Inorganic Ions in Wet Precipitation Collected from a Mountain Mining Zone and an Urban Area in Central Mexico

  • R. García
  • R. Pérez
  • A. Kotsarenko
  • H. Álvarez
  • H. Barrera
  • A. Carrillo-Chavez
  • O. Peralta
  • J. Campos
  • R. Torres
  • G. Hernández
Article

Abstract

We measured and compared mercury (Hg) and other ions in rainwater collected in San Joaquin (mining zone) and Juriquilla (urban area), central Mexico, from 2009 to 2012. A total of 274 rainwater samples were collected and analyzed for pH, electrical conductivity, \({\text{NO}}_{3}^{ - },\;{\text{SO}}_{4}^{{2 - }},\) Cl, \({\text{NH}}_{4}^{+},\) Na+, K+, Ca2+, Mg2+ and Hg. Mercury concentrations in rainwater varied from 24.21 to 248.89 (x-bar = 86.97 ± 10.77) µg L− 1 in San Joaquin (mining zone) and 11.26 to 176.91 (x-bar = 81.51 ± 10.24) µg L− 1 in Juriquilla (urban area). Rainwater sample were collected over periods 1–3 days, depending upon precipitation frequency. Significant correlations (p < 0.05) were found between \({\text{SO}}_{4}^{{2 - }},\) Cl, \({\text{NO}}_{3}^{ - },\) Na+, K+, Ca2+, Mg2+ and Hg at the San Joaquin site. Significant correlations were obtained between \({\text{SO}}_{4}^{{2 - }},{\text{NO}}_{3}^{ - },\;{\text{NH}}_{4}^{+},\) Na+, K+, Ca2+, Mg2+ and Hg at the Juriquilla site. In order to determine if there were significant differences among each measured parameter in rainwater collected in San Joaquin and Juriquilla, Kruskal–Wallis test was applied to data. We emphasized that the distribution and concentrations of Hg and the studied ions in rainwater samples were affected by atmospheric dust and local meteorological conditions of wind-speed and direction.

Keywords

Mercury in rainwater Inorganic ions Aerosol Urban Particles Mining zone versus urban area 

Notes

Acknowledgements

This work was funded by Grant PAPIIT-UNAM IA101313. We thank Carolina Muñoz, Higicel Dominguez, Manuel García, Wilfrido Gutiérrez, Miguel Mendoza, Miguel A, Flores, Claudio Amescua and José Ramón Hernández for their technical support and assistance with this manuscript.

References

  1. De la Rosa DA, Velasco A, Rosas A, Volke-Sepúlveda T (2006) Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area. Atmos Environ 40:2079–2088CrossRefGoogle Scholar
  2. Gray JE, Plumlee GS, Morman SA, Higueras PL, Crock JG, Lowers HA (2010) In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids. Environ Sci Technol 44:4782–4788CrossRefGoogle Scholar
  3. Hernández Silva G (2009) Mercurio: impacto en el hombre y la naturaleza, al sur de la Sierra Gorda de Querétaro, México. Centro de Geociencias, campus UNAM Juriquilla, Querétaro, p 126Google Scholar
  4. Higueras P, Llanos W, García ME, Mollán R, Serrano C (2012) Mercury vapor emissions from the Ingenios in Potosí (Bolivia). J Geochem Explor 116:1–7CrossRefGoogle Scholar
  5. Kumar R, Rani A, Singh SP, Kumari KM, Srivasttava SS (2002) A long study on chemical composition of rainwater at Dayalbagh, a suburban site of semiarid region. J Atmos Chem 41:265–279CrossRefGoogle Scholar
  6. Lamborg CH, Fitzgerald WF, O’Donnell J, Torgersen T (2002) A non-steady-state compartment model of global-scale mercury biochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Acta 66:1105–1118CrossRefGoogle Scholar
  7. Martínez-Trinidad S (2013) Comportamiento del mercurio total en los sistemas terrestres del distrito minero de San Joaquín, Qro. Aplicación de modelos geoestadísticos y de regresión con árboles de decisión. Tesis de Doctorado. Universidad Nacional Autónoma de México, Juriquilla, QroGoogle Scholar
  8. Martínez S, Hernández G, Ramírez M, Martínez J, Solorio G, Solís S, Garcia R (2013) Total mercury in terrestrial systems (air–soil–plant–water) at the mining region of San Joaquin, Querétaro, México. Rev Geofís Int 52(1):43–58Google Scholar
  9. Martínez Reyes J (2009) La mineralización de mercurio en la Sierra Gorda, región de San Joaquín, Qro. México. Marco geológico. In: Mercurio, el Hombre y la Naturaleza al sur de la Sierra Gorda de Querétaro, México; Memorias de los Trabajos realizados del 2006 al 2008. CAC Campus UNAM-Juriquilla, p 5–15Google Scholar
  10. Migliavacca D, Teixeira EC, Wiegand F, Machado ACM, Sanchez J (2005) Atmospheric precipitation and chemical composition of an urban site, Guaiba Hydrographic Basin, Brazil. Atmos Environ 39:1826–1844CrossRefGoogle Scholar
  11. Rangel GM (2017) Análisis de mercurio en aerosoles atmosféricos de una zona urbana y una semi-rural. Tesis de Maestría, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  12. Sánchez DM, Quejido AJ, Fernández M, Hernández C, Shmid T, Millán R, González M, Aldea M, Martín R, Morante R (2005) Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Anal Bioanal Chem 381:1507–1513CrossRefGoogle Scholar
  13. Siudek P, Falkowska L, Brodecka A, Kowalski A, Frankowski M, Siepak J (2015) Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland. Environ Sci Pollut Res Int 22:2546–2557.  https://doi.org/10.1007/s11356-014-3537-9 CrossRefGoogle Scholar
  14. USEPA (2001) Total mercury in tissue, sludge, sediment, and soil by acid digestión and BrCl oxidation. 821-R-01-013. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  15. USEPA (2002) Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  16. USEPA (2007) Method 7473, mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  17. Wan Q, Feng X, Lu J, Zheng W, Song X, Li P, Han S, Xu H (2009) Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environ Res 109(6):721–727CrossRefGoogle Scholar
  18. Zhang MY, Wang SJ, Wu FC, Yuan XH, Zhang Y (2007) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in south eastern China. Atmos Res 84:311–322CrossRefGoogle Scholar
  19. Zhao M, Xiu G, Qiao T, LI Y, Yu J (2016) Characteristics of haze pollution episodes and analysis of a typical winter haze process in Shanghai. Aerosol Air Qual Res 16:1625–1637.  https://doi.org/10.4209/aaqr.2016.01.0049. ISSN 1680-8584 print/2071-1409 online

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Ciencias de la AtmósferaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  3. 3.Facultad de IngenieríaUniversidad Autónoma del Carmen (UNACAR)Ciudad del CarmenMexico
  4. 4.Facultad de Ciencias NaturalesUniversidad Autónoma de QuerétaroQuerétaroMexico

Personalised recommendations