The Influence of Six Pesticides on Physiological Indices of Pelophylax Ridibundus (Pallas, 1771)

  • Alina Paunescu
  • Liliana Cristina Soare
  • Radu Claudiu Fierascu
  • Irina FierascuEmail author
  • Maria Cristina Ponepal


The objective of the study is to screen for morphological, biochemical and histological changes induced by six widely used pesticides (Reldan 40EC, Actara 25WG, Tilt 250EC, Champion 50WG, Fusilade Forte, Dual Gold 960EC) in the amphibian species Pelophylax ridibundus (Pallas, 1771). Highly degenerative changes were observed in animals cultured at 22–24°C, compared to those cultured at 4–6°C. The hepatosomatic index increased upon exposure to almost all of the pesticides, the erythrocyte number decreased upon exposure to all pesticides except Reldan 40EC, while leucopenia was observed only for Reldan 40EC and Actara 25WG. Hyperglycemia was observed upon administration of pesticides (except Champion 50WG and Fusilade Forte, for which hypoglycemia is registered), while a decrease in cholesterol levels was induced by nearly all pesticides. Triglycerides varied only slightly. The results suggest that chronic pesticides exposure can lead to alteration of various indices, as well as to hepatic lesions in amphibians.


Pesticides Physiological indices Histological changes Pelophylax ridibundus 



I. Fierascu and R.C. Fierascu gratefully acknowledge the support obtained by grants of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI – UEFISCDI, project number PNIII-P2-2.1-PTE-2016-0063 and project number PN-III-P2-2.1-PED-2016-0251, within PNCDI III.


  1. Akhtar N, Srivastava MK, Raizada RB (2009) Assessment of chlorpyrifos toxicity on certain organs in rat, Rattus norvegicus. J Environ Biol 30:1047–1053Google Scholar
  2. Allen J, Wolf D, George M, Hester S, Sun G, Thai S, Delker D, Moore T, Jones C, Nelson G, Roop B, Leavitt S, Winkfield E, Ward W, Nesnow S (2006) Toxicity profiles in mice treated with hepatotumorigenic and non-hepatotumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicol Pathol 34:853–862CrossRefGoogle Scholar
  3. Ambali S, Akanbi D, Igbokwe N, Shittu M, Kawu M, Ayo J (2007) Evaluation of subchronic chlorpyrifos poisoning on hematological and serum biochemical changes in mice and protective effect of vitamin C. J Toxicol Sci 2:111–120CrossRefGoogle Scholar
  4. Baier F, Jedinger M, Gruber E, Zaller JG (2016) Temperature-dependence of glyphosate-based herbicide’s effects on egg and tadpole growth of common toads. Front Environ Sci 4:51. CrossRefGoogle Scholar
  5. Bakalli RI, Pesti GM, Ragland WL, Konjufca V (1995) Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens. Poult Sci 74:360–365CrossRefGoogle Scholar
  6. Banaee M (2013) Physiological dysfunction in fish after insecticides exposure. In: Trdan S (ed) Insecticides—development of safer and more effective technologies. InTech, Rijeka, pp 103–143Google Scholar
  7. Cebrian C, Andreu-Moliner ES, Fernandez-Casalderrey A, Ferrando MD (1992) Acute toxicity and oxygen consumption in the gills of Procambarus clarkii in relation to chlorpyrifos exposure. Bull Environ Contam Toxicol 49:145–149. CrossRefGoogle Scholar
  8. Dumitriu I, Fierascu RC, Bunghez IR, Ion RM (2009) Application of inductively coupled plasma—atomic emission spectroscopy (ICP-AES) based analysis for water quality control. Environ Eng Manag J 8:347–351Google Scholar
  9. El Okle OS, El Euony OI, Khafaga AF, Lebda MA (2017) Thiamethoxam induced hepatotoxicity and pro-carcinogenicity in rabbits via motivation of oxidative stress, inflammation, and anti-apoptotic pathway. Environ Sci Pollut Res. Google Scholar
  10. EXTOXNET (1996) Fluazifop-p-butyl. Pesticide information profiles. Extension toxicology network. Accessed 20 Mar 2017
  11. Fenoglio C, Boncompagni E, Fasola M, Gandini C, Comizzoli S, Milanesi G, Barni S (2005) Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog Rana esculenta. Ecotoxicol Environ Saf 60:259–268CrossRefGoogle Scholar
  12. Ferrando MD, Andreu-Moliner E (1991) Effect of lindane on the blood of a freshwater fish Bull. Environ Contam Toxicol 47:465–470CrossRefGoogle Scholar
  13. Friedman S (1993) The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. New Engl J Med 328:1828–1835CrossRefGoogle Scholar
  14. Gibbons GF (2002) The role of cytochrome P450 in the regulation of cholesterol biosynthesis. Lipids 37(12):1163–1170CrossRefGoogle Scholar
  15. Green T, Toghill A, Lee R, Waechter F, Weber E, Noakes J (2005) Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 1: mode of action studies in the mouse. Toxicol Sci 86(1):36–47CrossRefGoogle Scholar
  16. Heidar H, Omid NST, Abbasali Z (2017) Monitoring organophosphorous pesticides residues in the Shahid Rajaei Dam reservoir, Sari, Iran. Bull Environ Contam Toxicol 98:791–797. CrossRefGoogle Scholar
  17. Hook SE, Gallagher EP, Batley GE (2014) The role of biomarkers in the assessment of aquatic ecosystem health. Integr Environ Assess Manag 10(3):327–341CrossRefGoogle Scholar
  18. Husak V (2015) Copper and copper-containing pesticides: metabolism, toxicity and oxidative stress. J Vasyl Stefanyk Precarpathian Nat Univ 2(1):38–50. Google Scholar
  19. International Programme on Chemical Safety (INCHEM) (1987) Pesticide residues in food: evaluations. Part II toxicology. Accessed 20 Mar 2017
  20. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100Google Scholar
  21. Karami-Mohajeri S, Abdollahi M (2010) Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 30(9):1119–1140CrossRefGoogle Scholar
  22. Kundu CR, Roychoudhury S (2009) Malathion-induced sublethal toxicity on the hematology of cricket frog (Fejervarya limnocharis). J Environ Sci Health B 44:673–680CrossRefGoogle Scholar
  23. Larsson E (2015) Endocrine disruption of the fungicide propiconazole in the frog Xenopus tropicalis: effects on the aromatase activity and egg development. Dissertation, Uppsala UniversityGoogle Scholar
  24. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519(7542):171–180CrossRefGoogle Scholar
  25. McCord JM, Gao B, Leff J, Flores SC (1994) Neutrophil-generated free radicals: possible mechanisms of injury in adult respiratory distress syndrome. Environ Health Perspect 102:57–60CrossRefGoogle Scholar
  26. Mollov I, Boyadzhiev P, Donev A (2010) Trophic role of the marsh frog Pelophylax ridibundus (Pallas, 1771) (Amphibia, Anura) in the aquatic ecosystems. Bulg J Agric Sci 16(3):298–306Google Scholar
  27. Nunes C, Silva A, Soares E (2011) The Use of hepatic and somatic indices and histological information to characterize the reproductive dynamics of Atlantic sardine Sardina pilchardus from the Portuguese coast. Mar Coast Fish 3:127–144CrossRefGoogle Scholar
  28. Paik SR, Shin HJ, Lee JH, Chang CS, Kim J (1999) Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem J 340:821–828CrossRefGoogle Scholar
  29. Papadimitriou EA, Loumbourdis NS (2003) Copper kinetics and hepatic metallothionein levels in the frog Rana ridibunda, after exposure to CuCl2. Biometals 16:271–277CrossRefGoogle Scholar
  30. Parmar TK, Rawtani D, Agrawal YK (2016) Bioindicators: the natural indicator of environmental pollution. Front Life Sci 9:110–118CrossRefGoogle Scholar
  31. Paunescu A, Zgurschi G, Soare LC, Man GM, Brinzea G, Fierascu RC, Fierascu I, Ponepal MC (2016) The protective role of thiourea on Leuciscus cephalus exposed to sublethal doses of Pendigan 330EC (Pendimethalin) herbicide. Bull Environ Contam Toxicol 97:203–210CrossRefGoogle Scholar
  32. Picos CA, Nastasescu Gh (1988) Practical applications of animal physiology (In Romanian: Lucrari practice de fiziologie animala). University of Bucharest Press, BucharestGoogle Scholar
  33. Pretto A, Loro VL, Machado Silva VM, Salbego J, de Menezes CC, de Freitas Souza C, Gioda CR, Baldisserotto B (2014) Exposure to sublethal concentrations of copper changes biochemistry parameters in Silver Catfish, Rhamdia quelen, Quoy & Gaimard. Bull Environ Contam Toxicol 92:399–433. CrossRefGoogle Scholar
  34. Quintaneiro C, Patrício D, Novais SC, Soares AMVM., Monteiro MS (2017) Endocrine and physiological effects of linuron and S-metolachlor in zebrafish developing embryos. Sci Total Environ 586:390–400CrossRefGoogle Scholar
  35. Ricker WE (1979) Growth Rates and Models. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. Academic Press, New York, pp 677–743Google Scholar
  36. Robinson SA, Richardson SD, Dalton RL, Maisonneuve F, Trudeau VL, Pauli BD, Lee-Jenkins SS (2017) Sublethal effects on wood frogs chronically exposed to environmentally relevant concentrations of two neonicotinoid insecticides. Environ Toxicol Chem 36(4):1101–1109CrossRefGoogle Scholar
  37. Romanova EB, Egorikhina MN (2006) Changes in hematological parameters of Rana frogs in a transformed urban environment. Russ J Ecol 37:188–192CrossRefGoogle Scholar
  38. Storck V, Karpouzas DG, Martin-Laurent F (2017) Towards a better pesticide policy for the European Union. Sci Total Environ 575:1027–1033CrossRefGoogle Scholar
  39. Testa B, Kramer SD (2006) The biochemistry of drug metabolism—an introduction: part 1. Principles and overview. Chem Biodivers 3(10):1053–1101CrossRefGoogle Scholar
  40. Tolbert ME, Kamalu JA, Draper GD (1981) Effects of cadmium, zinc, copper and manganese on hepatic parenchymal cell gluconeogenesis. J Environ Sci Health B 16:575–585CrossRefGoogle Scholar
  41. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50:600–613Google Scholar
  42. Vidyasagar J, Karunakar N, Reddy MS, Rajnarayana K, Surendar T, Krishna DR (2004) Oxidative stress and antioxidant status in acute organophosphorus insecticide poisoning. Ind J Pharmacol 36:76–79Google Scholar
  43. Yin XH, Zhu GN, Li XB, Liu SY (2009) Genotoxicity evaluation of chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by Comet assay and Micronucleus test. Mutat Res Genet Toxicol Environ 680(1–2):2–6CrossRefGoogle Scholar
  44. Zarn JA, Bruschweiler BJ, Schlatter JR (2003) Azole fungicides affect mammalian steroidogenesis by inhibitiong sterol 14α-demethylase and aromatase. Environ Health Perspect 111:255–261CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of ScienceUniversity of PitestiPitestiRomania
  2. 2.National Research and Development Institute for Chemistry and Petrochemistry – ICECHIMBucharestRomania

Personalised recommendations