Advertisement

The Effect of Different Intensities of Static Magnetic Field on Stress and Selected Reproductive Indices of the Zebrafish (Danio rerio) During Acute and Subacute Exposure

  • Elaheh Sedigh
  • Behrooz HeidariEmail author
  • Ali Roozati
  • Abdolmajid Valipour
Article

Abstract

The application of equipment and tools that produce a magnetic field is increasing in aquatic ecosystems. In the present study, the effects of acute (1 week) and subacute (3 weeks) exposures to different static magnetic fields (SMFs) of 2.5, 5, 7.5 mT on stress indices (cortisol and glucose), sex steroid hormones (17β-estradiol and 17-α hydroxy progesterone) and fecundity of the zebrafish (Danio rerio) were investigated. The obtained results showed a significant change in cortisol, glucose, 17β-estradiol (E2) and 17-α hydroxy progesterone (17-OHP) levels by enhancing the intensity and time of exposure to SMFs. In conclusion, the SMFs, especially at higher levels of intensities, showed physiologically harmful effects on the reproductive biology of the zebrafish during acute and subacute exposures.

Keywords

Static magnetic fields (SMFs) 17β-estradiol 17-α hydroxy progesterone Fecundity 

References

  1. Al-Akhras MA, Darmani H, Elbetieha A (2006) Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rats. Bioelectromagnetics 27:127–131CrossRefGoogle Scholar
  2. Andrulewicz E, Napierska D, Otremba Z (2003) The environmental effects of the installation and functioning of the submarine SwePol Link HVDC transmission line: a case study of the Polish Marine Area of the Baltic Sea. J Sea Res 49(4):337–345CrossRefGoogle Scholar
  3. Barton BA, Schreck CB (1987) Metabolic cost of acute physical stress in juvenile steelhead. Trans Am Fish Soc 116:257–263CrossRefGoogle Scholar
  4. Bonhomme-Faivre L, Mac´e A, Bezie Y (1998) Alterations of biological parameters in mice chronically exposed to low-frequency (50 Hz) electromagnetic fields. Life Sci 62(14):1271–1280CrossRefGoogle Scholar
  5. Fernanda SD, Débora F, Renan I, João GSR, Michele F, Alessandra M, Rodrigo EB, Angelo P, Leonardo JG (2018) Barcellos feeding regimen modulates zebrafish behavior. PeerJ 6:e5343CrossRefGoogle Scholar
  6. Formicki K, Szulc J, Korzelecka-Orkisz A, Tanski A, Kurzydłowski JK, Grzonka J, Kwiatkowski P (2015) The effect of a magnetic field on trout (Salmo trutta Linnaeus, 1758) sperm motility parameters and fertilisation rate. J Appl Ichthyol 31(1):136–146CrossRefGoogle Scholar
  7. Genba A, Taninaka M, Oda K, Kondo H (1963) Blood sugar determination by the o-toluidine method, with special reference to the use of the direct quantitative method. Rinsho Byori 11:116–119Google Scholar
  8. Gill AB, Kimber JA (2005) The potential for cooperative management of elasmobranchs and offshore renewable energy development in UK waters. J Mar Biol Assoc UK 85(5):1075–1081CrossRefGoogle Scholar
  9. Gill AB, Huang Y, Gloyne-Philips I, Metcalfe J, Quayle V, Spencer J, Wear-mouth V (2009) EMF-sensitive fish response to EM emissions from sub-sea electricity cables of the type used by the offshore renewable energy industry. Commissioned by Cowrie Ltd p. 68 (project reference COWRIE-EMF-1-06)Google Scholar
  10. Gorczynska E, Wegrzynowicz R (1991) Glucose homeostasis in rats exposed to magnetic fields. Invest Radiol 26(12):1095–1100CrossRefGoogle Scholar
  11. Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH (2008) Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol Environ Saf 71(3): 895–902CrossRefGoogle Scholar
  12. Health Protection Agency (2008) Static Magnetic Fields. Report of the independent Advisory Group on Non-ionising Radiation. RCE-6. Documents of the Health Protection Agency. Radiation, Chemical and Environmental Hazards. Chilton UKGoogle Scholar
  13. Heidari B, Roozati SA, Yavari L (2010) Changes in plasma levels of steroid hormones during oocyte development of Caspian Kutum (Rutilus frisii kutum, Kamensky, 1901). Anim Reprod 7(4):373–381Google Scholar
  14. Kubokawa K, Watanabe T, Yoshizaki M, Iwama M (1999) Effect of acute stress on plasma cortisol, sex steroid hormone and glucose level in male and female sockeye salmon during the breeding season. Aquaculture 172:335–349CrossRefGoogle Scholar
  15. Loghmannia J, Heidari B, Rozati SA, Kazemi S (2015) The physiological responses of the Caspian kutum (Rutilus frisii kutum) fry to the static magnetic fields with different intensities during acute and subacute exposures. Ecotoxicol Environ Saf 111:215–219CrossRefGoogle Scholar
  16. Mayden RL, Tang KL, Conway KW, Freyhof J, Chamberlain S, Haskins M, Schneider L, Sudkamp M (2007) Phylogenetic relationships of Danio within the order Cypriniformes: a framework for comparative and evolutionary studies of a model species. J Exper Zoo Part B Mol Dev Evol 308(5):642–654CrossRefGoogle Scholar
  17. Moon TW, Walsh PJ, Perry SF, Mommsen TP (1988) Effects of in vivo beta-adrenoceptor blockade on hepatic carbohydrate metabolism in rainbow trout. J Exp Zool 248:88–93CrossRefGoogle Scholar
  18. Nash JP, Davail- CuissetS B, Bhattacharyya S, Suter HC, Le Menn F, Kime DE (2000) An enzyme linked immunosorbant assay (ELISA) for testosterone, estradiol, and 17,20β-dihydroxy-4-pregenen-3-one using acetylcholinesterase as tracer: application to measurement of diel patterns in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 22(4):355–363CrossRefGoogle Scholar
  19. Noonan CW, Reif JS, Burch JB, Ichinose TY, Yost MG, Magnusson K (2002a) Relationship between amyloid beta protein and melatonin metabolite in a study of electric utility workers. J Occup Environ Med 44(8):769–775CrossRefGoogle Scholar
  20. Noonan CW, Reif JS, Yost M, Touchstone J (2002b) Occupational exposure to magnetic fields in case-referent studies of neurodegenerative diseases. Scand J Work Environ Health 28(1):42–48CrossRefGoogle Scholar
  21. Sadowski M, Winnicki A, Formicki K, Sobotinski A, Tanski A (2007) The effect of magnetic field on permeability of egg shells of salmonid fishes. Acta Ichthyol Piscat 37(2):129–135CrossRefGoogle Scholar
  22. Saldanha CJ, Luke RH, Schlinger BA (2011) Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr Rev 32(4):532–549CrossRefGoogle Scholar
  23. Skauli KS, Reitan JB, Walther BT (2000) Hatching in zebrafish (Danio rerio) embryos exposed to a 50 Hz magnetic field. Bioelectromagnetics 21(5):407–410CrossRefGoogle Scholar
  24. World Health Organization (2006) Static Fields (Environmental Health Criteria: 232). Geneva, SwitzerlandGoogle Scholar
  25. Zare S, Hayatgeibi H, Alivandi S, Ebadi AG (2005) Effects of whole-body magnetic field on changes of glucose and cortisol hormone in quinea pigs. Am J Biochem Biotechnol 4:209–211Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceUniversity of GuilanRashtIran
  2. 2.Department of Marine Sciences, Caspian Sea Basin Research CenterUniversity of GuilanRashtIran

Personalised recommendations