Influence of Coastal Submarine Groundwater Discharges on Seagrass Communities in a Subtropical Karstic Environment

  • C. A. Kantún-Manzano
  • J. A. Herrera-Silveira
  • F. Arcega-CabreraEmail author


The influence of coastal submarine groundwater discharges (SGD) on the distribution and abundance of seagrass meadows was investigated. In 2012, hydrological variability, nutrient variability in sediments and the biotic characteristics of two seagrass beds, one with SGD present and one without, were studied. Findings showed that SGD inputs were related with one dominant seagrass species. To further understand this, a generalized additive model (GAM) was used to explore the relationship between seagrass biomass and environment conditions (water and sediment variables). Salinity range (21–35.5 PSU) was the most influential variable (85%), explaining why H. wrightii was the sole plant species present at the SGD site. At the site without SGD, GAM could not be performed since environmental variables could not explain a total variance of > 60%. This research shows the relevance of monitoring SGD inputs in coastal karstic areas since they significantly affect biotic characteristics of seagrass beds.


Seagrass beds Submerged groundwater discharges Nutrients Generalized additive model 



UNAM-PAIP 5000-9146 provided financial support for the conduct of the research. Authors wish to thank the personnel of the Primary Production Laboratory and the Coastal Processes Laboratory at CINVESTAV-Mérida, particularly I. Osorio and J. Ramirez for their help with lab work. We thank Emmanuel Uc Sanchez for his help with data collection.


  1. Aranda CN (2001) Alimentando al mundo, envenenando al planeta: eutrofización y calidad del agua. Avan y Pers 20:293–303Google Scholar
  2. Aranda CN, Herrera-Silveira JA, Comín FA (2006) Nutrient water quality in a tropical coastal zone with groundwater discharge, northwest Yucatán, Mexico. Estuar Coast Shelf Sci 68:445–454CrossRefGoogle Scholar
  3. Arcega-Cabrera F, Velazquez-Tavera N, Fargher L, Derrien M, Noreña-Barroso E (2014) Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico. J Contam Hydrol 168:41–49CrossRefGoogle Scholar
  4. Arellano-Méndez LU (2004) Análisis espacio-temporal de las variables hidrológicas: detección de heterogeneidad a gran escala temporal. Tesis de Maestría. CINVESTAV, Unidad Mérida, Yucatán, MéxicoGoogle Scholar
  5. Aspila KI, Agemian H, Chau SY (1976) A semi-automated method for determination of organic and total phosphate in sediments. Analyst 101:187–197CrossRefGoogle Scholar
  6. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33CrossRefGoogle Scholar
  7. Collier CJ, Waycott M, Ospina AG (2012) Responses of four Indo-West Pacific seagrass species to shading. Mar Pollut Bull 65(4–9):342–354CrossRefGoogle Scholar
  8. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  9. Derrien M, Arcega-Cabrera F, Velázquez N, Kantún-Manzano C, Capella S (2015) Sources and distribution of organic matter along the ring of cenotes, Yucatan, Mexico: sterol markers and statistical approaches. Sci Total Environ 511:223–229CrossRefGoogle Scholar
  10. Enriquez C, Mariño-Tapia I, Herrera-Silveira JA (2010) Dispersion in the Yucatan Coastal Zone: implications for red tide events. Cont Shelf Res 30:127–137CrossRefGoogle Scholar
  11. EPA (1978) Method 365.3: phosphorous, all forms (colorimetric, ascorbic acid, two reagent).
  12. Fourqurean JW, Boyer JN, Durako MJ, Hefty LN, Peterson BJ (2003) Forecasting response of seagrass distribution to changing water quality using monitoring data. Ecol Appl 13:474–489CrossRefGoogle Scholar
  13. Garrido M, Lafabrie C, Torre F, Fernandez C, Pasqualini V (2013) Resilience and stability of Cymodocea nodosa seagrass meadows over the last four decades in a Mediterranean lagoon. Estuar Coast Shelf Sci 130:89–98CrossRefGoogle Scholar
  14. Herrera-Silveira JA, Comin FA (1995) Nutrient fluxes in a tropical coastal lagoon. Ophelia 42:127–146CrossRefGoogle Scholar
  15. Herrera-Silveira JA, Morales OS (2009) Evaluation of the health status of a coastal ecosystem in southeast Mexico. Assessment of water quality. Phytoplankton and submerged aquatic vegetation. Mar Poll Bull 59:72–86CrossRefGoogle Scholar
  16. Herrera-Silveira JA, Cebrian J, Hauxwell J, Ramirez-Ramirez J, Ralp P (2010) Evidence of negative impacts of ecological tourism on turtlegrass (Thalassia testudinum) beds in a marine protected area of the Mexican Caribbean. Aquat Ecol 44:23–31CrossRefGoogle Scholar
  17. Hwang DW, Kim G, Lee WC, Oh HT (2010) The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shell fish farming bay, in Korea. J Sea Res 64:224–230CrossRefGoogle Scholar
  18. INEGI (2015) Anuario estadístico y geográfico de la zona costera de YucatánGoogle Scholar
  19. Kamermans P, Malta EJ, Verschuure JM, Schrijvers L, Lentz LF, Lien ATA (2002) Effect of grazing by isopods and amphipods on growth of Ulva spp. (Chlorophyta). Aquat Ecol 36:425–433CrossRefGoogle Scholar
  20. Kantún MC (2011) Nutrient fluxes of the submarine groundwater discharges in Dzilam de Bravo. Yucatán. MSc. Thesis, CINVESTAV, Unidad Mérida, Yucatán, MéxicoGoogle Scholar
  21. Lee CM, Jiao JJ, Luo X, Moore WS (2012) Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong. Sci Total Environ 433:427–433CrossRefGoogle Scholar
  22. Lefticariu M, Perry EC, Ward WC, Lefticariu L (2006) Post-Chicxulub depositional and diagenetic history of the northwestern Yucatan Peninsula, Mexico. Sediment Geol 183:51–69CrossRefGoogle Scholar
  23. Lirman D, Deangelo G, Serafy J, Hazra A, Smith Hazra E, Herlan J, Luo J, Bellmund S, Wang J, Clausing R (2008) Seasonal changes in the abundance and distribution of submerged aquatic vegetation in a highly managed coastal lagoon. Hydrobiologia 596:105–120CrossRefGoogle Scholar
  24. McKenzie LJ (2007) Relationships between seagrass communities and sediment properties along the Queensland coast. Progress Report to the Marine and Tropical Sciences Research Facility. Reef and Rainforest Research Center Ltd, Cairns. pp 25Google Scholar
  25. Moore YH, Stoesses RK, Easley DH (1992) Fresh-water/sea-water relationship within a ground-water flow system. Northeast Coast Yucatan Penins Groundw 30(3):343–350Google Scholar
  26. Muñoz J, Freile-Pelegrin Y, Robledo D (2004) Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) color strins in tropical waters of Yucatan, Mexico. Aquaculture 239(1–4):161–177CrossRefGoogle Scholar
  27. Orduña-Rojas J, Robledo D, Dawes CJ (2002) Studies on the tropical agarophyte Gracilaria cornea J. Agardh (Rodophyta, Gracilariales) from Yucatan, Mexico. I. Seasonal physiological and biochemical responses. Bot Mar 45:453–458Google Scholar
  28. Orth RJ, Carruthers TJ, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes A, Randall A, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  29. Parsons T, Maita Y, Lally C (1984) A manual of chemical and biological methods of seawater analysis. Pergamon Press, OxfordGoogle Scholar
  30. Perry EC, Marin LE, McClain J, Velazquez G (1995) The ring of cenotes (Sinkholes), Northwest Yucatan, Mexico: its hydrogeologic characteristics and possible association with the Chicxulub impact crater. Geology 23:17–20CrossRefGoogle Scholar
  31. Polemio M, Limoni PP (2006) Groundwater pollution and risks for the coastal environment (Southeastern Italy). In: Predictions in Ungauged Basins: Promise and Progress (Proceedings of symposium S7 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005). IAHS Publ. 303, 2006Google Scholar
  32. Rodríguez-Martínez RE, Ruíz-Rentería F, Tussenbroek BI, Barba-Santos G, Escalante-Mancera E, Jordán GG, Jordán DE (2010) Environmental state and tendencies of the Puerto Morelos CARICOMP site, México. Rev Biol Trop 58:23–43Google Scholar
  33. Short FT, Coles RG (2001) Global seagrass research methods. Elsevier, AmsterdamGoogle Scholar
  34. Touchette BW, Burkholder JM (2000) Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol 250:133–167CrossRefGoogle Scholar
  35. Troccoli GL (2001) Structural variations of phytoplankton in the karstic coastal zone of Yucatan. PhD. Thesis. CINVESTAV, Mérida, México. pp 178Google Scholar
  36. Troccoli GL, Herrera-Silveira JA, Comín FA (2004) Structural variations of phytoplankton in the coastal seas of Yucatan, Mexico Hidrobiología 519:85–102CrossRefGoogle Scholar
  37. Valle-Levinson A, Mariño-Tapia I, Enriquez C, Waterhouse AF (2011) Tidal variability of salinity and velocity fields related to intense point-source submarine groundwater discharges into the coastal ocean. Limnol Oceangr 56:1213–1224CrossRefGoogle Scholar
  38. Villasuso P, Miguel J, Sánchez I, Canul MC, Casares SR, Baldazo EG, Souza CJ, Poot EP, Pech AC (2011) Hydrogeology and conceptual model of the karstic coastal aquifer in northern Yucatan state. Mexico. Trop Subtrop Agroecosyst 13:243–260Google Scholar
  39. Voudouris K, Panagopoulos A, Koumantakis J (2004) Nitrate pollution in the coastal aquifer system of the Korinthos Prefecture (Greece). Glob Nest Int J 6:31–38Google Scholar
  40. Zieman JC (1975) Tropical sea grass ecosystems and pollution. In: Ferguson EJ, Johannes EJ (eds) Tropical and marine pollution. Elsevier, Amsterdam, pp 63–74CrossRefGoogle Scholar
  41. Zieman JC, Fourqurean JW, Frankovich TA (1999) Seagrass die-off in Florida Bay: long-term trends in abundance and growth of turtle grass, Thalassia testudinum. Estuaries 22:460–470CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • C. A. Kantún-Manzano
    • 1
  • J. A. Herrera-Silveira
    • 1
  • F. Arcega-Cabrera
    • 2
    • 3
    Email author
  1. 1.Centro de Investigación y de Estudios Avanzados del IPN-MéridaMéridaMexico
  2. 2.Unidad de Química, Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MexicoSisalMexico
  3. 3.Centro de Investigación y de Estudios Avanzados del IPN-MéridaMéridaMexico

Personalised recommendations