Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation

Abstract

Used lubricant oils and metals can be common soil pollutants in abandoned sites. When soil is contaminated with various hazardous wastes, the efficiency of biological treatments could be affected. The purpose of this work was to investigate the effect of combining phytoremediation and composting on the efficiency of hydrocarbon degradation and lead solubility in a soil contaminated with 31,823 mg/kg of total petroleum hydrocarbon (TPH) from used motor oil and 8260 mg/kg of lead. Mexican cactus (Opuntia ficus indica) and yard trimmings were added in the composting process, and lucerne (Medicago sativa) was used in the phytoremediation process. After a 9 week composting process, only 13% of the initial TPH concentration was removed. The following 20 week phytoremediation process removed 48% of TPH. The highest TPH degradation percentage (66%), was observed in the experiment with phytoremediation only. This work demonstrates sustainable technologies, such as biological treatments, represent low-cost options for remediation; however, they are not frequently used because they require long periods of time for success.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbott TS (ed) (1985) Soil testing service—methods and interpretation. NSW Department of Agriculture, Sydney

  2. Abioye P, Agamuthu P, Abdul A (2012) Phyto treatment of soil contaminated with used lubricating oil using Hibiscus cannabinus. Biodegradation 23:277–286

  3. Adam G, Duncan H (2002) Influence of diesel on seed germination. Environ Pollut 120(2):363–370

  4. Adams S, Domínguez R, García H (1999) Potencial de la biorremediación de suelo y agua impactados por petróleo en el trópico mexicano. Terra Latinoamericana 17(2):159–174 (In Spanish)

  5. Akpoveta O, Egharevba F, Medjor O, OsaroI Enyemike E. (2011) Microbial degradation and its kinetics on crude oil polluted soil. Res J Chem Sci 1(6):8–14

  6. Basumatary B, Bordoloi S, Prasad S (2012) Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius. Water Air Soil Pollut 223:3373–3383

  7. Cairney T, Hobson D (1998) Contaminated land: problems and solutions. 2nd edn. Taylor & Francis Group, London, pp 392

  8. Chiu S, Ting G, Cissy S, Kar-Man H (2008) Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere 75:837–842

  9. Escobar A (2014) Estudio de la biodegradación de hidrocarburos en un suelo contaminado mediante la combinación de fitoremediación y compostaje. Dissertation. Universidad Autónoma Metropolitana of México. (In Spanish)

  10. Flores L (1995) Lubricantes usados. 1st edn. INE México, México. (In Spanish)

  11. Frick C, Germida J, Farrel R (1999) Assessment of fhytoremediation as an in-situ technique for cleaning oil contaminated sites. Proc Phyto Technol Semin 1:105–124

  12. Hillel D (1998) Environmental soil physics. 1st edn. Book ISBN: 9780080544151 Elsevier, Amsterdam, pp 771

  13. ISO 11261:1995 Soil quality—determination of total nitrogen—modified Kjeldahl method https://www.iso.org/standard/19239.html. Accessed 3 Apr 2015

  14. ISO 11263:1994 Soil quality—determination of phosphorus—spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution https://www.iso.org/standard/19241.html. Accessed 3 Apr 2015

  15. Jackson M (1976). Análisis químico de suelos. Ed. Omega. Barcelona. p 662. (In Spanish)

  16. Muratova A, Dmitrieva T, Panchenko L, Turkovskaya O (2008) Phytoremediation of oil-sludge contaminated soil. Int J Phyto 10(6):486–502. https://doi.org/10.1080/15226510802114920

  17. Pradhan S, Conrad J, Paterek J, Srivastava V (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7:467–480

  18. SAGARPA (Secretaría de Agricultura, Ganadería, Pesca y Alimentación). 2011. Comunicado de prensa 238/11. Coordinación General de Comunicación Social. México D. F. http://sagarpa.gob.mx/saladeprensa/boletines2/2011/mayo/Documents/2011B238.pdf (Consulta: July 13, 2017). (In Spanish)

  19. Schnoor J (1997) Technology evaluation report: phytoremediation, ground-water remediation technologies analysis center. http://clu-in.org/download/toolkit/phyto_e.pdf. Accessed 7 June 2016

  20. Seeley HW, Vandemark PJ, Lee JL (1991) Microbes in action. A laboratory manual of microbiology. 4th edn. W.H. Freeman, New York

  21. Singh O, Jain R (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

  22. USEPA (1986a) Method 9080 cation-exchange capacity of soils https://www.epa.gov/sites/production/files/2015-12/documents/9080.pdf. Accessed 7 June 2016

  23. USEPA (1986b) Method 7610 Potassium (atomic absorption, direct aspiration) https://www.epa.gov/sites/production/files/2015-12/documents/7610.pdf. Accessed 3 June 2016

  24. USEPA (1986c) Method 7770 Sodium (atomic absorption, direct aspiration) https://www.epa.gov/sites/production/files/2015-12/documents/7770.pdf. Accessed 3 June 2016

  25. USEPA (1986d) Method 7450 Magnesium (atomic absorption, direct aspiration) https://www.epa.gov/sites/production/files/2015-12/documents/7450.pdf. Accessed 7 June 2016

  26. USEPA (1986e) Method 7140. Calcium (atomic absorption, direct aspiration) https://www.google.com.mx/#q=US+EPA+method+7140&spf=1500168214469. Accessed 13 July 2017

  27. USEPA (1994) Biopiles. http://www.epa.gov/oust/pubs/tum_ch4.pdf. Accessed 3 April 2015

  28. USEPA (1996) Method 3540C: Soxhlet extraction, part of test methods for evaluating solid waste, physical/chemical methods (PDF) (p 8). https://19january2017snapshot.epa.gov/hw-sw846/sw-846-test-method-3540c-soxhlet-extraction_.html

  29. USEPA (1998a) An analysis of composting as an environmental remediation technology. http://www.epa.gov/compost/pubs/analpt1.pdf. Accessed 4 Feb 2016

  30. USEPA (1998b) Method 7010 (SW-846): Graphite Furnace Atomic Absorption Spectrophotometry. https://www.epa.gov/homeland-security-research/epa-method-7010-sw-846-gr. Accessed 3 Apr 2015

  31. USEPA (1999) Total organic carbon (TOC) in soil: SW-846 method 9060. https://www.epa.gov/quality/total-organic-carbon-toc-soil-sw-846-method. Accessed 3 Apr 2015

  32. USEPA (2001) Use of bioremediation at superfund sites http://epa.gov/tio/download/remed/542r01019.pdf. Accessed 17 July 2016

  33. USEPA (2004) W-846 test method 9045D: soil and waste pH. https://www.epa.gov/hw-sw846/sw-846-test-method-9045d-soil-and-waste-ph. Accessed 17 July 2017

  34. Vázquez K (2003) Restauración de un suelo contaminado con hidrocarburos mediante la implementación de biopilas Dissertation. Universidad Autónoma Metropolitana, México. (In Spanish)

  35. Volke S, Velasco T (2002) Tecnologías de remediación para suelos contaminados. INE-SEMARNAT, México (In Spanish)

  36. Volke S, Velasco T, De la Rosa P (2005) Suelos contaminados por metales y metaloides: muestreo y alternativas para su remediación. 1st edn. INE México, México. (In Spanish)

Download references

Acknowledgements

L.F. Escobar-Alvarado acknowledges the support of CONACYT (Nacional Council for Science and Technology, Mexico) for the Graduate Scholarship granted.

Author information

Correspondence to M. N. Rojas-Valencia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Escobar-Alvarado, L.F., Vaca-Mier, M., López, R. et al. Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation. Bull Environ Contam Toxicol 100, 280–285 (2018). https://doi.org/10.1007/s00128-017-2211-6

Download citation

Keywords

  • Contamination
  • Medicago sativa
  • Opuntia ficus indica
  • Remediation
  • Total petroleum hydrocarbon