Impact of Thiamethoxam on Honey Bee Queen (Apis mellifera carnica) Reproductive Morphology and Physiology

  • Ivana Tlak GajgerEmail author
  • Martina Sakač
  • Aleš Gregorc


High honey bee losses around the world have been linked in part by the regular use of neonicotinoids in agriculture. In light of the current situation, the aim of this study was to investigate the effects of thiamethoxam on the development of the reproductive system and physiology in the honey bee queen. Two experimental groups of honey bee queen larvae were treated with thiamethoxam during artificial rearing, applied via artificial feed in two cycles. In the first rearing cycle, honey bee larvae received a single treatment dose (4.28 ng thiamethoxam/queen larva on the 4th day after larvae grafting in artificial queen cells), while the second honey bee queen rearing cycle received a double treatment dose (total of 8.56 ng thiamethoxam/queen larva on the 4th and 5th day after larvae grafting in artificial queen cells). After emerging, queens were anesthetized and weighed, and after mating with drones were anesthetized, weighed, and sectioned. Ovary mass and number of stored sperm were determined. Body weight differed between untreated and treated honey bee queens. The results also show a decrease in the number of sperm within honey bee queen spermathecae that received the double thiamethoxam dose.


Thiamethoxam Honey bee queen Ovaries Spermathecae-stored sperm Artificial queen rearing 



The study was supported by the Erasmus Placement exchange student Program 2013/2014; as well as financial support from the Slovenian Research Agency, Research Programme P4-133 and FP7 Project CropSustaIn grant agreement FP7 – REGPOT – CT2012-316205.


  1. Akyol E, Yeninar H, Korkmaz A, Çakmak I (2008) An observation study on the effects of queen age on some characteristics of honey bee colonies. Ital J Anim Sci 7:19–25. doi: 10.4081/ijas.2008.19 CrossRefGoogle Scholar
  2. Aupinel P, Fortini D, Dufour H, Tasei JN, Michaud B, Odoux J-F, Pham-Delègue MH (2005) Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. Bull Insectol 58:107–111Google Scholar
  3. Bieńkowska M, Panasiuk B, Gerula D, Węgrzynowicz P (2009) Weight of honey bee queens and its effect on the quality of instrumentally inseminated queens. In: Proceedings of 41th International Apicultural Congress, Montpellier, France, 15–20 September, 2009. p 135Google Scholar
  4. Blacquiere T, Smagghe G, van Gestel CAM, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side effects and risk assessment. Ecotoxicology 21:973–992CrossRefGoogle Scholar
  5. Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67CrossRefGoogle Scholar
  6. Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134CrossRefGoogle Scholar
  7. Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, Van Engelsdorp D, Evans JD, (2012) Pathogen webs in collapsing honey bee colonies. PLoS ONE 7:e43562CrossRefGoogle Scholar
  8. Costa EM, Araujo EL, Maia AVP, Silva FEL, Bezerra CES, Silva GJ (2014) Toxicity of insecticides used in the Brazilian melon crop to the honeybee Apis mellifera under laboratory conditions. Apidologie 45:34–44CrossRefGoogle Scholar
  9. Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delegue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250CrossRefGoogle Scholar
  10. EFSA (European Food and Safety Authority) (2013) Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J 11(7):3295 (pp 266)CrossRefGoogle Scholar
  11. EFSA (European Food and Safety Authority) (2015) Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam considering all uses other than seed treatments and granules. EFSA J 13(8):4212 (pp 70)CrossRefGoogle Scholar
  12. Fairbrother A, Purdy J, Anderson T, Fell R (2014) Risks of neonicotinoids insecticides to honeybees. Environ Toxicol Chem 33:719–731CrossRefGoogle Scholar
  13. Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, Berg S, Ritter W, Mühlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352CrossRefGoogle Scholar
  14. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108CrossRefGoogle Scholar
  15. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:6229.  10.1126/science.1255957 CrossRefGoogle Scholar
  16. Gregorc A, Ellis JD (2011) Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pestic Biochem Physiol 99: 200–207CrossRefGoogle Scholar
  17. Gregorc A, Lokar V, Smodiš Škerl MI (2008) Testing of the isolation of the Rog-Ponikve mating station for Carniolan (Apis mellifera carnica) honey bee queens. J Apic Res 47:138–142CrossRefGoogle Scholar
  18. Gregorc A, Silva-Zacarin ECM, Carvalho SM, Kramberger D, Teixeira EV, Malaspina O (2016) Effects of Nosema ceranae and thiamethoxam in Apis mellifera: a comparative study in Africanized and Carniolan honey bees. Chemosphere 147:328–336CrossRefGoogle Scholar
  19. Harizanis PC (1983) Biology and activity of honey bee sperm: migration, concentration and ATP analysis: a hemacytometer method for counting honey bee (Apis mellifera L.) spermatozoa. Ph D thesis, University of California, Davis, USAGoogle Scholar
  20. Hatjina F, Costa C, Büchler R, Uzunov A, Drazic M, Filipi J et al (2014) Population dynamics of European honey bee genotypes under different environmental conditions. J Apic Res 53:233–247.doi: 10.3896/IBRA. CrossRefGoogle Scholar
  21. Henry M, Béguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350CrossRefGoogle Scholar
  22. Jung G (1981) Klima und Begattung. Bienenvater 102:71–74Google Scholar
  23. Meinfisch P, Huerlimann H, Rindlisbacher A, Gsell L, Dettwiler H, Haettenschwiler J, Sieger E, Walti M (2001) The discovery of thiamethoxam: a second-generation neonicotinoid. Pest Manag Sci 57:165–176CrossRefGoogle Scholar
  24. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, van Engelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5:3e9754. doi: 10.1371/journal.pone.0009754 CrossRefGoogle Scholar
  25. Nelson DL, Gary NE (1983) Honey productivity of honey bee colonies in relation to body weight, attractiveness and fecundity of the queen. J Apic Res 22:209–213CrossRefGoogle Scholar
  26. Oliveira RA, Roat TC, Carvalho SM, Malaspina O (2014) Side-effects of thiamethoxam on the brain and midgut of the Africanised honeybee (Hymenoptera: Apidae). Environ Toxicol 29:1122–1133CrossRefGoogle Scholar
  27. Pilling E, Campbell P, Coulson M, Ruddle N, Tornier I (2013) A four-year field program investigating long term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS ONE 8:e77193CrossRefGoogle Scholar
  28. Renzi MT, Rodríguez-Gasol N, Medrzycki P, Porrini C, Martini A, Burgio G, Maini S, Sgolastra F (2016) Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera. Apidologie. doi: 10.1007/s13592-016-0435-9 Google Scholar
  29. Rosa AS, Teixeira JSG, Vollet-Neto A, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2016) Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee, Scaptotrigona aff. depilis. Apidologie 47:729–738. doi: 10.1007/s13592-015-0424-4 CrossRefGoogle Scholar
  30. Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P (2014) Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9:e103592CrossRefGoogle Scholar
  31. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C et al (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34CrossRefGoogle Scholar
  32. Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352CrossRefGoogle Scholar
  33. Williams GR, Troxler A, Retschnig G, Roth K, Shutler Y, Neumann P, Gauthier L (2015) Neonicotinoid pesticides severely affect honey bee queens. Sci Rep 5:14621. doi: 10.1038/srep1461121 CrossRefGoogle Scholar
  34. Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS ONE 6(2):e14720. doi: 10.1371/journal.pone.0014720 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ivana Tlak Gajger
    • 1
    Email author
  • Martina Sakač
    • 1
  • Aleš Gregorc
    • 2
    • 3
  1. 1.Laboratory for Honeybee Diseases - NRL, Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Agricultural Institute of SloveniaLjubljanaSlovenia
  3. 3.Center for Coastal Horticulture ResearchMississippi State UniversityPoplarvilleUSA

Personalised recommendations