Concentrations of Environmental Chemicals in Urine and Blood Samples of Children from San Luis Potosí, Mexico

  • Ivan N. Perez-MaldonadoEmail author
  • Angeles C. Ochoa-Martinez
  • Sandra T. Orta-Garcia
  • Tania Ruiz-Vera
  • Jose A. Varela-Silva


Human biomonitoring (HBM) is an appreciated tool used to evaluate human exposure to environmental, occupational or lifestyle chemicals. Therefore, the aim of this study was to evaluate the exposure levels for environmental chemicals in urine and blood samples of children from San Luis Potosí, Mexico (SLP). This study identifies environmental chemicals of concern such as: arsenic (45.0 ± 15.0 µg/g creatinine), lead (5.40 ± 2.80 µg/dL), t,t-muconic acid (266 ± 220 µg/g creatinine), 1-hydroxypyrene (0.25 ± 0.15 µmol/mol creatinine), PBDEs (28.0 ± 15.0 ng/g lipid), and PCBs (33.0 ± 16.0 ng/g lipid). On the other hand, low mercury (1.25 ± 1.00 µg/L), hippuric acid (0.38 ± 0.15 µg/g creatinine) and total DDT (130 ± 35 ng/g lipid) exposure levels were found. This preliminary study showed the tool’s utility, as the general findings revealed chemicals of concern. Moreover, this screening exhibited the need for HBM in the general population of SLP.


1-OHP Benzene DDT Metals PBDEs PCBs 



This work was financed by a grant from the Consejo Nacional de Ciencia y Tecnología, Mexico. Proyectos de Desarrollo Científico para Atender Problemas Nacionales 2015. PDCPN2015-1558. The authors would like to thank Miss. Laura Carmen Martínez for helping with English editing.


  1. Armstrong TW, Zaleski RT, Konkel WJ, Parkerton TJ (2002) A tiered approach to assessing children’s exposure: a review of methods and data. Toxicol Lett 127:111–119CrossRefGoogle Scholar
  2. Basu N, Tutino R, Zhang Z et al (2014) Mercury levels in pregnant women, children, and seafood from Mexico City. Environ Res 135:63–69. doi: 10.1016/j.envres.2014.08.029 CrossRefGoogle Scholar
  3. Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112:9–17CrossRefGoogle Scholar
  4. Boucher O, Muckle G, Ayotte P et al (2016) Altered fine motor function at school age in Inuit children exposed to PCBs, methylmercury, and lead. Environ Int 95:144–151. doi: 10.1016/j.envint.2016.08.010 CrossRefGoogle Scholar
  5. Costilla-Salazar R, Trejo-Acevedo A, Rocha-Amador D et al (2011) Assessment of polychlorinated biphenyls and mercury levels in soil and biological samples from San Felipe, Nuevo Mercurio, Zacatecas, Mexico. Bull Environ Contam Toxicol 86:212–216. doi: 10.1007/s00128-010-0165-z CrossRefGoogle Scholar
  6. Diaz-Barriga F, Santos MA, Mejia JJ et al (1993) Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico. Environ Res 62:242–250CrossRefGoogle Scholar
  7. Ferrante MC, Amero P, Santoro A et al (2014) Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes. Toxicol Appl Pharmacol 279:401–408. doi: 10.1016/j.taap.2014.06.016 CrossRefGoogle Scholar
  8. Haines D a., Murray J (2012) Human biomonitoring of environmental chemicals—early results of the 2007–2009 Canadian Health Measures Survey for males and females. Int J Hyg Environ Health 215:133–137. doi: 10.1016/j.ijheh.2011.09.008 CrossRefGoogle Scholar
  9. Harley KG, Rauch SA, Chevrier J et al (2017) Association of prenatal and childhood PBDE exposure with timing of puberty in boys and girls. Environ Int. doi: 10.1016/j.envint.2017.01.003 Google Scholar
  10. Jasso-Pineda Y, Diaz-Barriga F, Yanez-Estrada L et al (2015) DNA damage in Mexican children living in high-risk contaminated scenarios. Sci Total Environ 518–519:38–48. doi: 10.1016/j.scitotenv.2015.02.073 CrossRefGoogle Scholar
  11. Kim SY, Son B-S, Park H-J et al (2017) Impact of environmental volatile organic compounds on otitis media in children: correlation between exposure and urinary metabolites. Int J Pediatr Otorhinolaryngol 93:157–162. doi: 10.1016/j.ijporl.2016.12.036 CrossRefGoogle Scholar
  12. Lanphear BP, Hornung R, Khoury J et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113:894–899CrossRefGoogle Scholar
  13. Martínez-Salinas RI, Elena Leal M, Batres-Esquivel LE et al (2010) Exposure of children to polycyclic aromatic hydrocarbons in Mexico: assessment of multiple sources. Int Arch Occup Environ Health 83:617–623. doi: 10.1007/s00420-009-0482-x CrossRefGoogle Scholar
  14. NHANES IV (2009) Fourth National Report on Human Exposure to Environmental Chemicals. Department of Health and Human Services Centers for Disease Control and Prevention, Atlanta, GeorgiaGoogle Scholar
  15. Ochoa-Martinez AC, Orta-Garcia ST, Rico-Escobar EM et al (2016) Exposure assessment to environmental chemicals in children from Ciudad Juarez, Chihuahua, Mexico. Arch Environ Contam Toxicol 70:657–670. doi: 10.1007/s00244-016-0273-9 CrossRefGoogle Scholar
  16. Pelallo-Martínez NA, Batres-Esquivel L, Carrizales-Yañez L, Díaz-Barriga FM (2014) Genotoxic and hematological effects in children exposed to a chemical mixture in a petrochemical area in Mexico. Arch Environ Contam Toxicol 67:1–8. doi: 10.1007/s00244-014-9999-4 CrossRefGoogle Scholar
  17. Pérez-Maldonado IN, Trejo-Acevedo A, Orta-García ST et al (2014) DDT and DDE concentrations in the blood of Mexican children residing in the southeastern region of Mexico. J Environ Sci Health B 49:87–93. doi: 10.1080/03601234.2014.846705 CrossRefGoogle Scholar
  18. Perez-Vazquez FJ, Flores-Ramirez R, Ochoa-Martinez AC et al (2015) Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosi, Mexico. Environ Monit Assess 187:4119. doi: 10.1007/s10661-014-4119-5 CrossRefGoogle Scholar
  19. Protano C, Andreoli R, Manini P, Vitali M (2012) Urinary trans, trans-muconic acid and S-phenylmercapturic acid are indicative of exposure to urban benzene pollution during childhood. Sci Total Environ 435–436:115–123. doi: 10.1016/j.scitotenv.2012.07.004 CrossRefGoogle Scholar
  20. Pruneda-Alvarez LG, Perez-Vazquez FJ, Ruiz-Vera T et al (2016a) Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment. Environ Sci Pollut Res Int 23:6816–6825. doi: 10.1007/s11356-015-5918-0 CrossRefGoogle Scholar
  21. Pruneda-Alvarez LG, Ruíz-Vera T, Ochoa-Martínez AC, Pérez-Maldonado IN (2016b) Urinary trans-trans muconic acid (exposure biomarker to benzene) and hippuric acid (exposure biomarker to toluene) concentrations in Mexican women living in high-risk scenarios of air pollution. Arch Environ Occup Health 1–8. doi: 10.1080/19338244.2016.1272539 Google Scholar
  22. Rich DQ (2017) Accountability studies of air pollution and health effects: lessons learned and recommendations for future natural experiment opportunities. Environ Int. doi: 10.1016/j.envint.2016.12.019 Google Scholar
  23. Schulz C, Angerer J, Ewers U, Kolossa-Gehring M (2007) The German human biomonitoring commission. Int J Hyg Environ Health 210:373–382. doi: 10.1016/j.ijheh.2007.01.035 CrossRefGoogle Scholar
  24. Schulz C, Angerer J, Ewers U et al (2009) Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German environmental survey on children 2003–2006 (GerES IV). Int J Hyg Environ Health 212:637–647. doi: 10.1016/j.ijheh.2009.05.003 CrossRefGoogle Scholar
  25. Suk WA, Ahanchian H, Asante KA et al (2016) Environmental pollution: an under-recognized threat to children’s health, especially in low- and middle-income countries. Environ Health Perspect 124:A41–A45. doi: 10.1289/ehp.1510517 CrossRefGoogle Scholar
  26. Trejo-Acevedo A, Diaz-Barriga F, Carrizales L et al (2009) Exposure assessment of persistent organic pollutants and metals in Mexican children. Chemosphere 74:974–980. doi: 10.1016/j.chemosphere.2008.10.030 CrossRefGoogle Scholar
  27. Vuong AM, Braun JM, Yolton K et al (2017) Prenatal and postnatal polybrominated diphenyl ether exposure and visual spatial abilities in children. Environ Res 153:83–92. doi: 10.1016/j.envres.2016.11.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ivan N. Perez-Maldonado
    • 1
    • 2
    Email author
  • Angeles C. Ochoa-Martinez
    • 1
    • 2
  • Sandra T. Orta-Garcia
    • 1
    • 2
  • Tania Ruiz-Vera
    • 1
    • 2
  • Jose A. Varela-Silva
    • 1
    • 3
  1. 1.Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT)Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Unidad Académica Multidisciplinaria Zona MediaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Facultad de EnfermeríaUniversidad Autónoma de ZacatecasZacatecasMexico

Personalised recommendations