A Novel Liquid–Liquid Extraction for the Determination of Sertraline in Tap Water and Waste Water at Trace Levels by GC–MS

  • Elif Seda Koçoğlu
  • Sezgin Bakırdere
  • Seyfullah Keyf


A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid–liquid extraction with gas chromatography–mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.


Sertraline Supportive liquid–liquid extraction GC–MS Internal standard 


  1. Al-Saidi HM, Emara AAA (2014) The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes. J Saudi Chem Soc 18(6):745–761. doi: 10.1016/j.jscs.2011.11.005 CrossRefGoogle Scholar
  2. Asgharinezhad AA, Karami S, Ebrahimzadeh H, Shekari N, Jalilian N (2015) Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids. Int J Pharm 494(1):102–112. doi: 10.1016/j.ijpharm.2015.08.001 CrossRefGoogle Scholar
  3. Bahrami G, Mohammadi B, Farshchi A, Ghiasi G (2009) Quantitative analysis of sertraline in human serum by LC with fluorescence detection after pre-column derivatization with 4-chloro-7-nitrobenzofurazan. Chromatographia 70(1):323–327. doi: 10.1365/s10337-009-1111-2 CrossRefGoogle Scholar
  4. Bakariki N, Chormey DS, Bakirdere S, Engin GO (2016) Development of a sensitive liquid-liquid extraction method for the determination of N-butyryl-l-homoserine lactone produced in a submerged membrane bioreactor by gas chromatography mass spectrometry and deuterated anthracene as the internal standard. Anal Methods 8(12):2660–2665. doi: 10.1039/C6AY00317F CrossRefGoogle Scholar
  5. Bound JP, Kitsou K, Voulvoulis N (2006) Household disposal of pharmaceuticals and perception of risk to the environment. Environ Toxicol Pharmacol 21(3):301–307. doi: 10.1016/j.etap.2005.09.006 CrossRefGoogle Scholar
  6. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S et al (2012) Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environ Health Perspect 120:1221–1229. doi: 10.1289/ehp.1104477 CrossRefGoogle Scholar
  7. Calisto V, Esteves VI (2009) Psychiatric pharmaceuticals in the Environment. Chemosphere 77(10):1257–1274. doi: 10.1016/j.chemosphere.2009.09.021 CrossRefGoogle Scholar
  8. Chaves AR, Leandro FZ, Carris JA, Queiroz MEC (2010) Microextraction in packed sorbent for analysis of antidepressants in human plasma by liquid chromatography and spectrophotometric detection. J Chromatogr B 878:2123–2129. doi: 10.1016/j.jchromb.2010.06.023 CrossRefGoogle Scholar
  9. Cheng HY, Liang JT, Zhang QL, Tu, YF (2012) The electrochemical behavior and oxidation mechanism of sertraline on a rutin modified electrode. J Electroanal Chem 674:7–11. doi: 10.1016/j.jelechem.2012.03.023 CrossRefGoogle Scholar
  10. Conley JM, Symes SJ, Kindelberger SA, Richards SM (2008) Rapid liquid chromatography–tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J Chromatogr A 1185(2):206–215. doi: 10.1016/j.chroma.2008.01.064 CrossRefGoogle Scholar
  11. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(6):907–938. doi: 10.2307/3434573 CrossRefGoogle Scholar
  12. De Vane CL (1999) Metabolism and pharmacokinetics of selective serotonin reuptake inhibitors. Cell Mol Neurobiol 19(4):443–466. doi: 10.1023/A:1006934807375 CrossRefGoogle Scholar
  13. De Castro A, Concheiro M, Quintela O, Cruz A, Lopez Rivadulla M (2008) LC-MS/MS method for the determination of nine antidepressants and some of their metabolites in oral fluid and plasma: study of correlation between venlafaxine concentrations in both matrices. J Pharm Biomed Anal 48(1):183–193. doi: 10.1016/j.jpba.2008.05.024 CrossRefGoogle Scholar
  14. Dobrowska JS, Erarpat S, Chormey DS, Pyrzynska K, Bakirdere S (2016) A novel liquid–liquid extraction for the determination of nicotine in tap water, wastewater, and saliva at trace levels by GC–MS. J AOAC Int 99(3):806–812. doi: 10.5740/jaoacint.16-0041 CrossRefGoogle Scholar
  15. Edwards JG, Anderson I (1999) Systematic review and guide to selection of selective serotonin reuptake inhibitors. Drugs 57(4):507–533. doi: 10.2165/00003495-199957040-00005 CrossRefGoogle Scholar
  16. Frahnert C, Rao ML, Grasmader K (2003) Analysis of eighteen antidepressants, four atypical antipsychotics and active metabolites in serum by liquid chromatography: a simple tool for therapeutic drug monitoring. J Chromatogr B 794(1):35–47. doi: 10.1016/S1570-0232(03)00393-3 CrossRefGoogle Scholar
  17. Gonzalez Alonso S, Catala M, Maroto RR, Gil JL, Miguel AG, Valcarcel Y (2010) Pollution by psychoactive pharmaceuticals in the Rivers of Madrid Metropolitan Area (Spain). Environ Int 36(2):195–201. doi: 10.1016/j.envint.2009.11.004 CrossRefGoogle Scholar
  18. Huang SW, Hsieh MM, Chang SY (2012) Sensitive determination of sertraline by capillary electrophoresis with dispersive liquid-liquid microextraction and field-amplified sample stacking. Talanta 101:460–464. doi: 10.1016/j.talanta.2012.09.060 CrossRefGoogle Scholar
  19. Izadyar A, Arachchige DR, Cornwell H, Hershberger JC (2016) Ion transfer splitting voltammetry for the detection of nanomolar levels of fluoxetine, citalopram, and sertraline in tap and river water samples. Sens Actuat B 223:226–233. doi: 10.1016/j.snb.2015.09.048 CrossRefGoogle Scholar
  20. Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176. doi: 10.1016/j.watres.2010.11.010 CrossRefGoogle Scholar
  21. Jones T, Van Breda K, Charles B, Dean AJ, McDermott BM, Norris R (2009) Determination of risperidone and 9-hydroxyrisperidone using HPLC, in plasma of children and adolescents with emotional and behavioural disorders. Biomed Chromatogr 23(9):929–934. doi: 10.1002/bmc.1204 CrossRefGoogle Scholar
  22. Khalil NY, Mahmoud AM, Darwish IA, Al-Majed AA (2010) Highly Sensitive HPLC method with automated co-sense system and fluorescence detection for determination of sertraline in human plasma. Chromatographia 71(9):825–831. doi: 10.1365/s10337-010-1560-7 CrossRefGoogle Scholar
  23. Khater MM, Hassib HB, Issa YM, Mohammed SH (2015) Surface morphology changes of polymer membrane and carbon paste sertraline sensors. Talanta 134:546–553. doi: 10.1016/j.talanta.2014.11.018 CrossRefGoogle Scholar
  24. Khraiwesh A, Papoutsis I, Nikolaou P, Pistos C, Spiliopoulou C, Athanaselis S (2011) Development and validation of an EI-GC/MS method for the determination of sertraline and its major metabolite desmethyl-sertraline in blood. J Chromatogr B 879(25):2576–2582. doi: 10.1016/j.jchromb.2011.07.015 CrossRefGoogle Scholar
  25. Kocoglu ES, Bakirdere S, Keyf S (2016) Sensitive determination of sertraline in commercial drugs and its stability check in simulated gastric juice. J AOAC Int 99(6):1527–1532. doi: 10.5740/jaoacint.16-0075 CrossRefGoogle Scholar
  26. Krasner SW, Westerhoff P, Chen B, Rittmann BE, Amy G (2009) Occurrence of disinfection by products in united states wastewater treatment plant effluents. Environ Sci Technol 43(21):8320–8325. doi: 10.1021/es901611m CrossRefGoogle Scholar
  27. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J Environ Manage 90(8):2354–2366. doi: 10.1016/j.jenvman.2009.01.023 CrossRefGoogle Scholar
  28. Lacassie E, Gaulier JM, Marquet P, Rabatel JF, Lazhatre G (2000) Methods for the determination of seven selective serotonin reuptake inhibitors and three active metabolites in human serum using high-performance liquid chromatography and gas chromatography. J Chromatogr B 742(2):229–238. doi: 10.1016/S0378-4347(00)00159-6 CrossRefGoogle Scholar
  29. Lamas JP, Salgado-Petinal C, Garcia-Jares C, Llompart M, Cela R, Gomez M (2004) Solid-phase microextraction–gas chromatography–mass spectrometry for the analysis of selective serotonin reuptake inhibitors in environmental water. J Chromatogr A 1046:241–247. doi: 10.1016/j.chroma.2004.06.099 CrossRefGoogle Scholar
  30. Lamichhane K, Garcia SN, Huggett DB, DeAngelis DL (2014) Exposures to a selective serotonin reuptake inhibitor (SSRI), sertraline hydrochloride, over multiple generations: changes in life history traits in Ceriodaphnia dubia. Ecotoxicol Environ Saf 101:124–130. doi: 10.1016/j.ecoenv.2013.11.026 CrossRefGoogle Scholar
  31. Li Y, Zhang W, Wang RG, Wang PL, Xo S (2015) Development of a efficient and sensitive dispersive liquid-liquid microextraction technique for extraction and preconcentration of 10 β2-agonists in animal urine. PLoS ONE 10(9):e0137194. doi: 10.1371/journal.pone.0137194 CrossRefGoogle Scholar
  32. Melo LP, Nogueira AM, Lancas FM, Queiroz MEC (2009) Polydimethylsiloxane/polypyrrole stir bar sorptive extraction and liquid chromatography (SBSE/LC-UV) analysis of antidepressants in plasma samples. Anal Chim Acta 633:57–64. doi: 10.1016/j.aca.2008.11.042 CrossRefGoogle Scholar
  33. Minagh E, Hernan R, O’Rourke K, Lyng FM, Davoren M (2009) Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotoxicol Environ Saf 72(2):434–440. doi: 10.1016/j.ecoenv.2008.05.002 CrossRefGoogle Scholar
  34. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals inwater and wastewater environments. Anal Bioanal Chem 387:1225–1234. doi: 10.1007/s00216-006-1035-8 CrossRefGoogle Scholar
  35. Puckowski A, Mioduszewska K, Lukaszewicz P, Borecka M, Caban M, Maszkowska J, Stepnowski P (2016) Bioaccumulation and analytics of pharmaceutical residues in the environment: a review. J Pharm Biomed Anal 127:232–255. doi: 10.1016/j.jpba.2016.02.049 CrossRefGoogle Scholar
  36. Sasajima Y, Lim LW, Takeuchi T, Suenami K, Sato Takekoshi Y (2010) Simultaneous determination of antidepressants by non-aqueous or quasi-non-aqueous capillary electrophoresis. Anal Sci 26:693–698. doi: 10.2116/analsci.26.693 CrossRefGoogle Scholar
  37. Schultz MM, Furlong ET, Kolpin DW, Werner SL, Schoenfuss HL, Barber LB, Blazer VS, Norris DO, Vajda AM (2010) Antidepressant pharmaceuticals in two u.s. effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environ Sci Technol 44(6):1918–1925. doi: 10.1021/es9022706 CrossRefGoogle Scholar
  38. Serbest H, Bakirdere S, Keyf S (2016) Development of an analytical method for the determination of valsartan in commercial drug and sewage sludge samples by HPLC and evaluation of its stability under simulated gastric conditions. J Liq Chromatogr RT 39(11):526–531. doi: 10.1080/10826076.2016.1202265 CrossRefGoogle Scholar
  39. Shao B, Chen D, Zhang J, Wu Y, Sun C (2009) Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater. J Chromatogr A 1216(47):8312–8318. doi: 10.1016/j.chroma.2009.08.038 CrossRefGoogle Scholar
  40. Till AE (2005) Pharmaceutical data do not elude researchers. Environ Sci Technol 39(19):392 A-392 A. doi: 10.1021/es053361t CrossRefGoogle Scholar
  41. Unceta N, Ugarte A, Sanchez A, Gomez-Caballero A, Goicolea MA, Barrio RJ (2010) Development of a stir bar sorptive extraction based HPLC-FLD method for the quantification of serotonin reuptake inhibitors in plasma, urine and brain tissue samples. J Pharm Biomed Anal 51(1):178–185. doi: 10.1016/j.jpba.2009.07.015 CrossRefGoogle Scholar
  42. Wille SM, Maudens KE, Van Peteghem CH, Lambert WE (2005) Development of a solid phase extraction for 13 ‘new’ generation antidepressants and their active metabolites for gas chromatographic-mass spectrometric analysis. J Chromatogr A 1098(1–2):19–29. doi: 10.1016/j.chroma.2005.08.059 CrossRefGoogle Scholar
  43. Yuan SL, Li XF, Jiang XM, Zhang HX, Zheng SK (2013) Simultaneous determination of 13 psychiatric pharmaceuticals in sewage by automated solid phase extraction and liquid chromatography-mass spectrometry. Chinese J. Anal Chem 41:49–56. doi: 10.1016/S1872-2040(13)60623-4 CrossRefGoogle Scholar
  44. Zheng MM, Wang ST, Hu WK, Feng YQ (2010) In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatography-mass spectrometry for automated analysis of ten antidepressants in humassn urine and plasma. J Chromatogr A 1217(48):7493–7501. doi: 10.1016/j.chroma.2010.10.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Elif Seda Koçoğlu
    • 1
  • Sezgin Bakırdere
    • 2
  • Seyfullah Keyf
    • 1
  1. 1.Chemical Engineering Department, Faculty of Chemistry and Metallurgical EngineeringYıldız Technical UniversityIstanbulTurkey
  2. 2.Chemistry Department, Faculty of Art and ScienceYıldız Technical UniversityIstanbulTurkey

Personalised recommendations