Sediment Metal Contamination in the Kafue River of Zambia and Ecological Risk Assessment

  • Ethel M’kandawire
  • Kennedy Choongo
  • John Yabe
  • Maxwell Mwase
  • Ngonda Saasa
  • Shouta M. M. Nakayama
  • Nesta Bortey-Sam
  • Claudia A. Blindauer
Article

Abstract

Zambia’s Kafue River receives wastes from various sources, resulting in metal pollution. This study determined the degree of contamination of 13 metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Hg and Pb) in Kafue River sediment and the associated ecological risks at six sites in three different seasons. The level of contamination for most metals showed significant site and seasonal differences. The contamination factor and pollution load index indicated that concentrations of most metals particularly copper (Cu), cobalt (Co), manganese (Mn) and arsenic (As) were very high at sites within the Copperbelt mining area. The geoaccumulation index showed an absence of anthropogenic enrichment with Cd and Hg at all the study sites and extreme anthropogenic enrichment with Cu at sites in the Copperbelt mining area. Potential ecological risk showed that Cu and As were likely to cause adverse biological effects to aquatic organisms in the Copperbelt mining region of the Kafue River.

Keywords

Kafue River sediment Metals Copperbelt mining area Contamination factor Pollution load index Geoaccumulation index Potential ecological risk 

Notes

Acknowledgements

Authors are grateful to the laboratory technical staff at the University of Warwick (especially Mr. Philip Ashton) and the University of Zambia (Mr. Joseph Ndebe, Mr. Ladsluv Moonga and Mr. John Chilundu). Furthermore, we are grateful to the Commonwealth Scholarship Commission (ZMCN-2013-352), University of Warwick, International Foundation for Science (IFS) number A/5212-1 and University of Zambia for sponsoring this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alaoui AM, Choura M, Maanan M, Zourarah B, Robin M, Conceição MF, Andrade C, Khalid M, Carruesco C (2010) Metal fluxes to the sediments of the Moulay Bousselham lagoon, Morocco. ‎Environ. Earth Sci 61:275–286CrossRefGoogle Scholar
  2. Bäckström M (1996) A Sediment Study in the Kafue River, Zambia, Master’s Thesis, Luleå University of Technology, Luleå 96Google Scholar
  3. Basha PS, Rani AU (2003) Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Saf 56(2):218–221CrossRefGoogle Scholar
  4. Bhuiyan MA, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173:384–392CrossRefGoogle Scholar
  5. Calmano W, Ahlf W, Förstner U (1990) Exchange of heavy metals between sediment components and water. Springer, Berlin, pp. 503–522Google Scholar
  6. Choongo KC, Syakalima MS, Mwase M (2005) Coefficient of condition in relation to copper levels in muscle of serranochromis fish and sediment from the Kafue river, Zambia. Bull Environ Contam Toxicol 75:645–651CrossRefGoogle Scholar
  7. Fernandes C, Fontaínhas-Fernandes A, Cabral D, Salgado MA (2008) Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz–Paramos lagoon, Portugal. ‎Environ Monit Assess 36:267–275Google Scholar
  8. Gupta A, Rai DK, Pandey RS, Sharma B (2009) Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. ‎Environ Monit Assess 157:449–458CrossRefGoogle Scholar
  9. Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001CrossRefGoogle Scholar
  10. Hatje V, Bidone ED, Maddock JL (1998) Estimation of the natural and anthropogenic components of heavy metal fluxes in fresh water Sinos river, Rio Grande do Sul state, SouthBrazil. Environ Technol 19:483–487CrossRefGoogle Scholar
  11. Hatje V, Payne TE, Hill DM, McOrist G, Birch GF, Szymczak R (2003) Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environ Int 29:619–629CrossRefGoogle Scholar
  12. Ikenaka Y, Nakayama SM, Muzandu K, Choongo K, Teraoka H, Mizuno N, Ishizuka M (2010) Heavy metal contamination of soil and sediment in Zambia. Afr J Environ Sci Technol 4:729–739Google Scholar
  13. Islam MS, Han S, Ahmed MK, Masunaga S (2014) Assessment of trace metal contamination in water and sediment of some rivers in Bangladesh. J Water Environ Technol 12:109–121CrossRefGoogle Scholar
  14. Kambole MS (2003) Managing the water quality of the Kafue River. Phys Chem Earth, Parts A/B/C 28(20):1105–1109CrossRefGoogle Scholar
  15. Karbassi AR, Monavari SM, Bidhendi GR, Nouri J, Nematpour K (2008) Metal pollution assessment of sediment and water in the Shur River. Environ Monit Assess 147:107–116CrossRefGoogle Scholar
  16. Khadse GK, Patni PM, Kelkar PS, Devotta S (2008) Qualitative evaluation of Kanhan River and its tributaries flowing over central Indian plateau. Environ Monit Assess 147:83–92CrossRefGoogle Scholar
  17. Loska K, Cebula J, Pelczar J, Wiechuła D, Kwapuliński J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Pollut 93:347–365Google Scholar
  18. Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165CrossRefGoogle Scholar
  19. M’kandawire E, Syakalima M, Muzandu K, Pandey G, Simuunza M, Nakayama SM, Kawai YK, Ikenaka Y, Ishizuka M (2012) The nucleotide sequence of metallothioneins (MT) in liver of the Kafue lechwe (Kobus leche kafuensis) and their potential as biomarkers of heavy metal pollution of the Kafue River. Gene 506:310–316CrossRefGoogle Scholar
  20. Mayo M, Collier ZA, Winton C, Chappell M (2015) Data-driven method to estimate nonlinear chemical equivalence. PLoS ONE 10(7):e0130494CrossRefGoogle Scholar
  21. Mendelsohn F (ed) (1961) The geology of the Northern Rhodesian Copperbelt. Macdonald and Co. Ltd, LondonGoogle Scholar
  22. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geo J 2:108–118.Google Scholar
  23. Mwase M, Viktor T, Norrgren L (1998) Effects on tropical fish of soil sediments from Kafue River, Zambia. Bull Environ Contam Toxicol 61(1):96–101CrossRefGoogle Scholar
  24. Norrgren L, Pettersson URNS, Örn S, Bergqvist PA (2000) Environmental monitoring of the Kafue River, located in the Copperbelt, Zambia. Arch Environ Contam Toxicol 38(3):334–341CrossRefGoogle Scholar
  25. Nwadinigwe CA, Udo GJ, Nwadinigwe AO (2014) Seasonal variations of heavy metals concentrations in sediment samples around major tributaries in Ibeno coastal area, Niger delta, Nigeria. IJST 3(11):254–265Google Scholar
  26. Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640CrossRefGoogle Scholar
  27. Qui H (2010) Studies on the potential ecological risk and homology correlation of heavy metal in the surface soil. JAS 2:194–201Google Scholar
  28. Solomon F (2009) Impacts of copper on aquatic ecosystems and human health. Environ Commun 25–28Google Scholar
  29. Sracek O, Kříbek B, Mihaljevič M, Majer V, Veselovský F, Vencelides Z, Nyambe I (2012) Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: an example of a high neutralization capacity system. J Geochem Explor 112:174–188CrossRefGoogle Scholar
  30. Srikanth K, Rao JV (2014) Spatial and seasonal variation of potential toxic elements in Adocia pigmentifera, seawater and sediment from Rameswaram, southeast coast of India. Environ Earth Sci 72(8):2905–2916CrossRefGoogle Scholar
  31. Stevens J (1999) Post hoc Tests in ANOVA. Course notes. University of Oregan, EugeneGoogle Scholar
  32. Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl Radiat Isot 69:1466–1474CrossRefGoogle Scholar
  33. Yabe J, Ishizuka M, Umemura T (2010) Current levels of heavy metal pollution in Africa. J Vet Med Sci 72:1257–1263CrossRefGoogle Scholar
  34. Zhao QN, Xu QX, Yang K (2005) Application of potential ecological risk index in soil pollution of typical polluting industries. J East China Norm Univ Nat Sci 1:110–115Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Veterinary MedicineUniversity of ZambiaLusakaZambia
  2. 2.Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  3. 3.Department of ChemistryUniversity of WarwickCoventryUK

Personalised recommendations