Advertisement

The Effects of Sertraline on Fathead Minnow (Pimephales promelas) Growth and Steroidogenesis

  • D. R. CartyEmail author
  • D. Hala
  • D. B. Huggett
Article

Abstract

The purpose of this study was to evaluate the steroidogenic effects of sertraline, a popular selective serotonin reuptake inhibitor, on larval fathead minnow (FHM; Pimephales promelas) and adult FHM. Larvae were exposed to 0.1, 1, and 10 µg/L sertraline for 28 days and analyzed for differential mRNA expression of 11β-hydroxysteroid dehydrogenase (11β-HSD), 20β-hydroxysteroid dehydrogenase (20β-HSD), aromatase (CYP19a), nuclear thyroid receptor alpha (TRα), and normalized to RP-L8. Adult FHM were exposed to 3 or 10 µg/L sertraline for 7 days and analyzed for differential expression of the same genes with the addition of thyroid receptor beta (TRβ). Larval FHM exposed to 0.1 μg/L had a significant upregulation of both 20β-HSD and TRα while adult FHM exposed to 10 µg/L had a significant upregulation of 11β-HSD expression in brain tissue. The significance of these findings with respect to survival, growth and reproduction are currently unknown, but represent areas for future research.

Keywords

Pharmaceuticals Fathead minnow Endocrine disruption 

Notes

Acknowledgements

We would like to thank William Baylor Steele IV for his tremendous technical assistance and Hagar Mohamed for supplying adult FHM brain and ovary tissue.

References

  1. Batt AL, Kostich MS, Lazorchak JM (2008) Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal Chem 80(13):5021–5030. doi: 10.1021/ac800066n CrossRefGoogle Scholar
  2. Brochet DM, Martin P, Soubrié P, Simon P (1987) Triiodothyronine potentiation of antidepressant-induced reversal of learned helplessness in rats. Psychiatry Res 21(3):267–275. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3628611
  3. Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, La Point TW (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142(3):169–183. doi: 10.1016/S0378-4274(03)00066-3 CrossRefGoogle Scholar
  4. De Morais A, Traple F (2010) (Section Editor: M. G. Zeier) Hypokalaemia and the thyroid—is there a link? 3:89–90. doi: 10.1093/ndtplus/sfp131
  5. Dubé F, Amireault P (2007) Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci 81(25–26):1627–1637. doi: 10.1016/j.lfs.2007.09.034 CrossRefGoogle Scholar
  6. EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, Fifth. EPA Office of Water, Washington, DCGoogle Scholar
  7. Filby AL, Thorpe KL, Maack G, & Tyler CR (2007) Gene expression profiles revealing the mechanisms of anti-androgen- and estrogen-induced feminization in fish. Aquat Toxicol 81:219–231. doi: 10.1016/j.aquatox.2006.12.003 CrossRefGoogle Scholar
  8. Garcia-Reyero N, Ekman DR, Habib T, Villeneuve DL, Collette TW, Bencic DC, Perkins EJ (2014) Integrated approach to explore the mechanisms of aromatase inhibition and recovery in fathead minnows (Pimephales promelas). Gen Comp Endocrinol 203:193–202. doi: 10.1016/j.ygcen.2014.03.022 CrossRefGoogle Scholar
  9. Grzeskowiak LE, Gilbert AL, Morrison JL (2012). Long term impact of prenatal exposure to SSRIs on growth and body weight in childhood: evidence from animal and human studies. Reprod Toxicol 34(1):101–109. doi: 10.1016/j.reprotox.2012.03.003 CrossRefGoogle Scholar
  10. Heid AC, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994. doi: 10.1101/gr.6.10.986 CrossRefGoogle Scholar
  11. Kuhl AJ, Brouwer M (2005) Antiestrogens inhibit xenoestrogen-induced brain aromatase activity but do not prevent xenoestrogen-induced feminization in Japanese Medaka (Oryzias latipes). Environ Health Perspect 114(4):500–506. doi: 10.1289/ehp.8211 CrossRefGoogle Scholar
  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefGoogle Scholar
  13. Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M, Horseman ND (2004) Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev Cell 6(2):193–203. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14960274
  14. Mennigen JA, Lado WE, Zamora JM, Duarte-Guterman P, Langlois VS, Metcalfe CD, Trudeau VL (2010) Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquat Toxicol 100(4):354–364CrossRefGoogle Scholar
  15. Overturf MD, Overturf CL, Carty DR, Hala D, Huggett DB (2014). Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production. Aquat Toxicol 148:152–161. doi: 10.1016/j.aquatox.2014.01.012 CrossRefGoogle Scholar
  16. Painter MM, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Schoenfuss H (2009) Pharmaceuticals and personal care products in the environment antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 28(12):2677–2684CrossRefGoogle Scholar
  17. Schultz MM, Furlong ET (2008) Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. Anal Chem 80(5):1756–1762. doi: 10.1021/ac702154e CrossRefGoogle Scholar
  18. Schultz MM, Furlong ET, Kolpin DW, Werner SL, Schoenfuss HL, Barber LB, Vajda AM (2010) Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environ Sci Technol 44(6):1918–1925. doi: 10.1021/es9022706 CrossRefGoogle Scholar
  19. Simmons PS, Miles JM, Gerich JE, Haymond MW (1984) Increased proteolysis. An effect of increase in plasma cortisol within the physiologic range. J Clin Invest 73:412–420CrossRefGoogle Scholar
  20. Taylor D, Senac T (2014) Human pharmaceutical products in the environment—the “problem” in perspective. Chemosphere 1–5. doi: 10.1016/j.chemosphere.2014.01.011
  21. Tokumoto M, Nagahama Y, Thomas P, Tokumoto T (2006). Cloning and identification of a membrane progestin receptor in goldfish ovaries and evidence it is an intermediary in oocyte meiotic maturation. Gen Comp Endocrinol 145(1):101–108. doi: 10.1016/j.ygcen.2005.07.002 CrossRefGoogle Scholar
  22. Valenti TW, Gould GG, Berninger JP, Connors KA, Keele NB, Prosser KN, Brooks BW (2012) Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows. Environ Sci Technol 46(4):2427–2435. doi: 10.1021/es204164b CrossRefGoogle Scholar
  23. Villeneuve DL, Knoebl I, Kahl MD, Jensen KM, Hammermeister DE, Greene KJ, Ankley GT (2006) Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas). Aquat Toxicol 76:353–368. doi: 10.1016/j.aquatox.2005.10.016 CrossRefGoogle Scholar
  24. Weinberger J, Klaper R (2014) Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat Toxicol 151:77–83. doi: 10.1016/j.aquatox.2013.10.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biology, Institute of Applied SciencesUniversity of North TexasDentonUSA

Personalised recommendations