Trace Element Contamination in Tissues of Four Bird Species from the Rift Valley Region, Ethiopia

  • Yared Beyene Yohannes
  • Yoshinori Ikenaka
  • Shouta M. M. Nakayama
  • Hazuki Mizukawa
  • Mayumi Ishizuka
Article

Abstract

Concentrations of ten trace elements (Hg, As, Cd, Pb, Co, Cr, Cu, Ni, Se and Zn) were determined in different tissues (liver, kidney, muscle, heart and brain) of African sacred ibis (Threskiornis aethiopicus), Hamerkop (Scopus umbretta), marabou stork (Leptoptilos crumeniferus) and great white pelican (Pelecanus onocrotalus) inhabiting the Ethiopian Rift Valley region. There were differences in trace element patterns among the bird species. Significantly (p < 0.05) higher concentrations of Cd (5.53 µg/g dw ± 2.94) in kidney and Hg (0.75 µg/g ww ± 0.30) in liver were observed in the great white pelican compared to the other species, and liver concentrations of these two elements showed positive correlations with trophic level. Concentrations of toxic elements (As, Cd, Pb and Hg) in liver were below their respective toxicological thresholds, indicating that the data may provide baseline information for future studies.

Keywords

Bird Tissue Trace element Ecological risk assessment Ethiopian rift valley 

References

  1. Birdlife International (2013) Country profile: Ethiopia http://www.birdlife.org/datazone/userfiles/file/IBAs/AfricaCntryPDFs/Ethiopia.pdf
  2. Burger J, Gochfeld M (2000) Effects of lead on birds (Laridae): a review of laboratory and field studies. J Toxicol Environ Health B Crit Rev 3:59–78CrossRefGoogle Scholar
  3. Burger J, Gochfeld M (2002) Effects of chemicals and pollution on seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC, NewYork, pp 492–525Google Scholar
  4. Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257CrossRefGoogle Scholar
  5. Carpenter JW, Andrews GA, Nelson Beyer W (2004) Zinc toxicosis in a free-flying trumpeter swan (Cygnus buccinator). J Wildl Dis 40:769–774CrossRefGoogle Scholar
  6. Clark AJ, Scheuhammer AM (2003) Lead poisoning in upland foraging birds of prey in Canada. Ecotoxicology 12:23–30CrossRefGoogle Scholar
  7. Eisler R (1986) Chromium hazards to fish, wildlife and invertebrates: a synoptic review. Biological report 85 (1.6). U.S. Fish and Wildlife Service, WashingtonGoogle Scholar
  8. Eisler R (1987) Mercury hazards to fish, wildlife and invertebrates: a synoptic review. Biological report 85 (1.10). U.S. Fish and Wildlife Service, WashingtonGoogle Scholar
  9. Eisler R (1994) A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. In: Nriagu JO, Simmons MS (eds) Arsenic in the environment. Part II: human health and ecosystem effects. Wiley, New York, pp 185–259Google Scholar
  10. Furness RW (1993) Birds as monitors of pollutants. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman and Hall, London, pp 86–143CrossRefGoogle Scholar
  11. Furness RW (1996) Cadmium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis Press, Boca Raton, pp 389–404Google Scholar
  12. Goyer AR (1997) Toxic and essential metal interactions. Ann Rev Nutr 17:37–50CrossRefGoogle Scholar
  13. Heinz GH (1996) Selenium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis Press, Boca Raton, pp 447–458Google Scholar
  14. Ikemoto T, Kunito T, Tanaka H, Baba N, Miyazaki N, Tanabe S (2004) Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver. Arch Environ Contam Toxicol 47:402–413CrossRefGoogle Scholar
  15. Kim EY, Murakami T, Saeki K, Tatsukawa R (1996) Mercury levels and its chemical form in tissues and organs of seabirds. Arch Environ Contam Toxicol 30:259–266CrossRefGoogle Scholar
  16. Kojadinovic J, Le Corre M, Cosson RP, Bustamante P (2007) Trace elements in three marine birds breeding on Reunion Island (Western Indian Ocean) part 1: factors influencing their bioaccumulation. Arch Environ Contam Toxicol 52:418–430CrossRefGoogle Scholar
  17. Kunito T, Kubota R, Fujihara J, Agusa T, Tanabe S (2008) Arsenic in marine mammals, seabirds, and sea turtles. Rev Environ Contam Toxicol 195:31–69CrossRefGoogle Scholar
  18. Levina A, Codd R, Dillon CT, Lay PA (2003) Chromium in biology: nutritional aspects and toxicology. Prog Inorg Chem 51:145–250Google Scholar
  19. Lucia M, André JM, Gonzalez P, Baudrimont M, Gontier K, Maury-Brachet R, Davail S (2009) Impact of cadmium on aquatic bird Cairina moschata. Biometals 22:843–845CrossRefGoogle Scholar
  20. Lucia M, André JM, Gontier K, Diot N, Veiga J, Davail S (2010) Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the Southwest Atlantic Coast of France. Arch Environ Contam Toxicol 58:844–853CrossRefGoogle Scholar
  21. Lucia M, Bocher P, Cosson RP, Churlaud C, Bustamante P (2012) Evidence of species-specific detoxification processes for trace elements in shorebirds. Ecotoxicology 21:2349–2362CrossRefGoogle Scholar
  22. Mateo R, Green AJ, Lefranc H, Baos R, Figuerola J (2007) Lead poisoning in wild birds from southern Spain: a comparative study of wetland areas and species affected, and trends over time. Ecotoxicol Environ Saf 66:119–126CrossRefGoogle Scholar
  23. Nam DH, Anan Y, Ikemoto T, Tanabe S (2005) Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds. Mar Pollut Bull 50:1347–1362CrossRefGoogle Scholar
  24. Pain D, Sears J, Newton I (1995) Lead concentrations in birds of prey in Britain. Environ Pollut 87:173–180CrossRefGoogle Scholar
  25. Ralston NVC, Blackwell JL, Raymond LJ (2007) Importance of molar ratios in selenium dependent protection against methylmercury toxicity. Biol Trace Elem Res 119:255–268CrossRefGoogle Scholar
  26. Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ Pollut 46:263–295CrossRefGoogle Scholar
  27. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18CrossRefGoogle Scholar
  28. Skoric S, Visnjic-Jeftic Z, Jaric I, Djikanovic V, Mickovic B, Nikcevica M, Lenhardt M (2012) Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicol Environ Saf 80:244–251CrossRefGoogle Scholar
  29. Snoeijs T, Dauwe T, Pinxten R, Vandesande F, Eens M (2004) Heavy metal exposure affects the humoral immune response in a free-living small songbird, the great tit (Parus major). Arch Environ Contam Toxicol 46:399–404CrossRefGoogle Scholar
  30. Varian-Ramos CW, Swaddle JP, Cristol DA (2014) Mercury reduces avian reproductive success and imposes selection: an experimental study with adult- or lifetime-exposure in zebra finch. PLoS ONE 9(4):e95674. doi:10.1371/journal.pone.0095674 CrossRefGoogle Scholar
  31. Yohannes YB, Ikenaka Y, Nakayama SMM, Ishizuka M (2014) Organochlorine pesticides in bird species and their prey (fish) from the Ethiopian Rift Valley region, Ethiopia. Environ Pollut 192:121–128CrossRefGoogle Scholar
  32. Zhang WW, Ma JZ (2011) Waterbirds as bioindicators of wetland heavy metal pollution. Procedia Environ Sci 10:2769–2774CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yared Beyene Yohannes
    • 1
    • 2
  • Yoshinori Ikenaka
    • 1
    • 4
  • Shouta M. M. Nakayama
    • 1
  • Hazuki Mizukawa
    • 3
  • Mayumi Ishizuka
    • 1
  1. 1.Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of Chemistry, College of Natural and Computational SciencesUniversity of GondarGondarEthiopia
  3. 3.Department of Environmental Veterinary Sciences, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  4. 4.Water Research Group, Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations