Advertisement

Genotoxicity Effects in Freshwater Fish from a Brazilian Impacted River

  • Isac Silva de Jesus
  • Marta Margarete Cestari
  • Marcos de Almeida Bezerra
  • Paulo Roberto Antunes de Mello Affonso
Article

Abstract

This study evaluated the incidence of nuclear abnormalities (NA) in four fish species from an impacted river in Northeastern Brazil, characterized by accumulation of heavy metals and organic sewage. Two carnivores (Serrasalmus brandtii and Hoplias malabaricus) and two omnivore species (Oreochromis niloticus and Geophagus brasiliensis), used as food sources by local populations, were collected during the dry and the rainy season along Contas River basin. Nuclear abnormalities (bulbs, binuclei, lobes, micronuclei, notches, and vacuoles) were reported in all fish samples, with high occurrence in S. brandtii and H. malabaricus, species commonly found in local fish markets. This result agrees with previous analyses of accumulation of trace metals in both species, suggesting an association of genotoxic effects and biomagnification. Moreover, native specimens collected near urban areas presented higher frequencies of NA while O. niloticus seems to be more tolerant to environmental contamination. Therefore, effective policies are required to reduce the contamination of Contas River, since pollution by xenobiotics are potential threats to both local biodiversity and human population.

Keywords

Biomagnification Ecotoxicology Micronuclei Risk assessment 

Notes

Acknowledgments

The authors thank UESB for the financial support, ICMBio/SISBIO for authorizing fish collection (License Number 26752-1) and local fisherman Valdemir for the assistance in collecting samples.

References

  1. Arkhipchuk VV, Garanko NN (2005) Using the nucleolar biomarker and the micronucleus test on in vivo fish fin cells. Ecotoxicol Environ Saf 62:42–52CrossRefGoogle Scholar
  2. Ayllón F, Garcia-Vazquez E (2001) Micronuclei and other nuclear lesions as genotoxicity indicators in rainbow trout Oncorhynchus mykiss. Ecotoxicol Environ Saf 49:221–225CrossRefGoogle Scholar
  3. Ayllón F, Suciu R, Gephard S, Juanes F, Garcia-Vazquez E (2000) Conventional armament wastes induce micronuclei in wild brown trout Salmo trutta. Mutat Res 470:169–176CrossRefGoogle Scholar
  4. Ayres M, Ayres Júnior M, Ayres DL, Santos AA (2007) BIOESTAT –Aplicações estatísticas nas áreas das ciências bio-médicas. Ong Mamiraua, BelémGoogle Scholar
  5. Barbosa JS, Cabral TM, Ferreira DN, Agnez-Lima LF, Medeiros SRB (2010) Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicol Environ Saf 73:320–325CrossRefGoogle Scholar
  6. Baršienė J, Butrimavičienė L, Michailovas A, Grygiel W (2015) Assessing the environmental genotoxicity risk in the Baltic Sea: frequencies of nuclear buds in blood erythrocytes of three native fish species. Environ Monit Assess 187:4078. doi: 10.1007/s10661-014-4078-x CrossRefGoogle Scholar
  7. Benicá C, Ramsdorf W, Vicari T, Ribeiro CAO, Almeida MI, Assis HCS, Cestari MM (2012) Chronic genetic damages in Geophagus brasiliensis exposed to anthropic impact in Estuarine Lakes at Santa Catarina Coast-Southern of Brazil. Environ Monit Assess 184:2045–2056CrossRefGoogle Scholar
  8. Blessing JJ, Marshall JC, Balcombe SR (2010) Humane killing of fishes for scientific research: a comparison of two methods. J Fish Biol 76:2571–2577CrossRefGoogle Scholar
  9. Carvalho LN, Arruda R, Raizer J, Del-Claro K (2007) Feeding habits and habitat use of three sympatric piranha species in the Pantanal wetland of Brazil. Ichthyol Explor Freshwat 18:109–116Google Scholar
  10. Çavas T, Ergene-Gozukara S (2003) Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (AgNORs) as cyto-genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent. Mutat Res 538:81–91CrossRefGoogle Scholar
  11. Correia LO, Siqueira S Jr., Carneiro PLS, Bezerra MA (2014) Evaluation of the use of Leptodactylus ocellatus (Anura: Leptodactylidae) frog tissues as bioindicator of metal contamination in Contas River, Northeastern Brazil. An Acad Bras Ciênc 86:1549–1561CrossRefGoogle Scholar
  12. Duarte ID, Dias MC, David JAO, Matsumoto ST (2012) A qualidade da água da Lagoa Jacuném (Espírito Santo, Brasil) em relação a aspectos genotóxicos e mutagênicos, mensurados respectivamente pelo ensaio do cometa e teste do micronúcleo em peixes da espécie Oreochromis niloticus. Rev Bras Biocienc 10:211–219Google Scholar
  13. Ergene S, Çavas T, Çelik A, Köleli N, Aymak C (2007) Evaluation of river water genotoxicity Using the piscine micronucleus test. Environ Mol Mutagen 48:421–429CrossRefGoogle Scholar
  14. Grisolia CK, Rivero CLG, Starling FLRM, Silva ICR, Barbosa AC, Dorea JG (2009) Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake. Genet Mol Biol 32:138–143CrossRefGoogle Scholar
  15. Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:187–190CrossRefGoogle Scholar
  16. IBGE—Instituto Brasileiro de Geografia e Estatística (2010) Censo Demográfico 2010. http://censo2010.ibge.gov.br/. Accessed Mar 2015
  17. Jesus TB, Carvalho CEV, Ferreira AG, Siqueira EM, Machado ALS (2012) Mercury distribution in muscular tissues of a tropical carnivorous fish (Hoplias malabaricus) from four lakes in the North of Rio de Janeiro State, SE Brazil. J Braz Soc Ecotoxicol 7:37–42CrossRefGoogle Scholar
  18. Jesus IS, Medeiros RLS, Cestari MM, Bezerra MA, Affonso PRAM (2014) Analysis of metal contamination and bioindicator potential of predatory fish species along Contas River basin in northeastern Brazil. Bull Environ Contam Toxicol 52:551–556CrossRefGoogle Scholar
  19. Korfali SI, Davies BE (2004) Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Adv Environ Res 8:599–612CrossRefGoogle Scholar
  20. Lemos CT, Rödel PM, Terra NR, Oliveira NCD, Erdtmann B (2007) River water genotoxicity evaluation using micronucleus assay in fish erythrocytes. Ecotoxicol Environ Saf 66:391–401CrossRefGoogle Scholar
  21. Loureiro VE, Hahn NS (1996) Dieta e atividade alimentar da traíra Hoplias malabaricus (BLOCH, 1794) (Osteichthyes, Erythrinidae), nos primeiros anos de formação do reservatório de Segredo—PR. Acta Limnol Bras 8:195–205Google Scholar
  22. Osman A, Ali E, Hashem M, Mostafa M, Mekkawy I (2010) Genotoxicity of two pathogenic strains of zoosporic fungi (Achlyak lebsiana and Aphanomyces laevis) on erythrocytes of Nile tilapia Oreochromis niloticus niloticus. Ecotoxicol Environ Saf 73:24–31CrossRefGoogle Scholar
  23. Palacio-Betancur I, Palacio-Baena JA, Camargo-Guerrero M (2009) Micronuclei test application to wild tropical ichthyic species common in two lentic environments of the low zones in Colombia. Actual Biol 31:67–77Google Scholar
  24. Pantaleão SM, Alcântara AV, Alves JPH, Spanó MA (2006) The piscine micronucleus test to assess the impact of pollution on the Japaratuba River in Brazil. Environ Mol Mutagen 47:219–224CrossRefGoogle Scholar
  25. Rivero CLG, Barbosa AC, Ferreira MFN, Dorea JG, Grisolia CK (2008) Evaluation of genotoxicity and effects on reproduction of nonylphenol in Oreochromis niloticus (Pisces: Cichlidae). Ecotoxicology 17:732–737CrossRefGoogle Scholar
  26. Rocha PS, Luvizotto GL, Kosmehl T, Böttcher M, Storch V, Braunbeck T, Hollert H (2009) Sediment genotoxicity in the Tietê River (São Paulo, Brazil): in vitro comet assay versus in situ micronucleus assay studies. Ecotoxicol Environ Saf 72:1842–1848CrossRefGoogle Scholar
  27. Sá TRBT, Sá MT (2004) Os processos espaciais presentes no espaço urbano de Jequié—Bahia. Estud Geogr Rev Eletron Geogr 2:1–13Google Scholar
  28. Santos JS, Santos MJS, Santos MLP (2012) Influence of the rainfall regime on the mobility of Zn, Cd, Ni, Cu, Mn and Fe in the surface sediments of the Contas River located in the Brazilian semi-arid region. J Braz Chem Soc 23:718–726Google Scholar
  29. Schmid W (1975) The micronucleus test. Mutat Res 31:9–15CrossRefGoogle Scholar
  30. Silva GS, Neto FF, Assis HCS, Bastos WR, Ribeiro CAO (2012) Potential risks of natural mercury levels to wild predator fish in an Amazon reservoir. Environ Monit Assess 184:4815–4827CrossRefGoogle Scholar
  31. SRH—Secretaria de Recursos Hídricos (2007) Resolução nº 20, de 23 de agosto de 2007. http://www.semarh.ba.gov.br. Accessed July 2012
  32. Udroiu I (2006) The micronucleus test in piscine erythrocytes. Aquat Toxicol 79:201–204CrossRefGoogle Scholar
  33. Vicari T, Ferraro MVM, Ramsdorf WA, Mela M, Ribeiro CAO, Cestari MM (2012) Genotoxic evaluation of different doses of methylmercury (CH3Hg+) in Hoplias malabaricus. Ecotoxicol Environ Saf 82:47–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Isac Silva de Jesus
    • 1
  • Marta Margarete Cestari
    • 3
  • Marcos de Almeida Bezerra
    • 2
  • Paulo Roberto Antunes de Mello Affonso
    • 1
  1. 1.Department of Biological SciencesUniversidade Estadual do Sudoeste da BahiaJequiéBrazil
  2. 2.Department of Chemistry and Exact SciencesUniversidade Estadual do Sudoeste da BahiaJequiéBrazil
  3. 3.Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations